歌颂党的作文800字

时间:2024-07-04 16:30:50 800字作文 我要投稿
  • 相关推荐

【经典】歌颂党的作文800字

  无论是在学校还是在社会中,许多人都有过写作文的经历,对作文都不陌生吧,借助作文可以提高我们的语言组织能力。你知道作文怎样写才规范吗?以下是小编为大家整理的歌颂党的作文800字,希望能够帮助到大家。

【经典】歌颂党的作文800字

歌颂党的作文800字1

  一、知识特点的差异与变化

  数学语言在抽象程度上突变;不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很难理解.确实,初高中的数学语言有着显著的区别.初中的数学主要是以形象、通俗的语言方式进行表达.而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等.

  思维方法向理性层次跃迁;高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同.初中阶段,很多老师为学生将各种题建立了统一的思维模式,分别确定了各自的思维套路.因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,正如上节所述,数学语言的抽象化对思维能力提出了更高要求.当然,能力的发展是渐进的,不是一朝一夕的事,这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降.高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证形思维.

  知识内容剧增;初中数学知识少、浅、难度容易、知识面窄.高中数学知识广泛,是对初中的数学知识推广和引伸,也是对初中数学知识的完善.

  二、学习方法与学习状态

  学习习惯因依赖心理而滞后.初中生在学习上的依赖心理是很明显的.第一,为提高分数,初中数学教学中教师将各种题型形成套路,学生依赖于教师为其提供套路;第二,父母盼子成材心切,回家后辅导也是常事.升入高中后,教师的教学方法变了,套路没有了,家长辅导的能力跟不上了,由“参与学习”转入“督促学习”.许多同学进入高中后,还象以前那样,跟随老师的这指挥棒运转,没有掌握学习的主动权.表现为无计划,等上课,课前不预习,对老师要上课的内容不深刻理解,课堂忙记笔记,没听到分析,不会巩固所学的知识.

  思想松懈.有些同学把初中的那一套搬迁到高中来.他们认为自已在初中时并没有用功学习,只是在中考前努力了几个月就轻而易举地考上了高中,而且有的可能还是尖子班,因而认为读高中也不过如此,初始阶段根本就用不着那么用功,只要等到高考前努力几个月,也一样会考上一所理想的大学的.存有这种思想的同学是大错而后特错的'.因为目前中考题目并不具有很明显的选拨性,同学们都很容易考得高分.但高考就不同了,目前我们国家的优秀大学还十分有限,因此高考的题目具有很强的选拨性,如果心存侥幸,想在高三时再发奋几个月就考上大学,那到头来你会后悔莫及的.同学们不妨打听打听现在的高三,有多少同学就是因为开始时不努力学习,临近高考了,发现自己缺漏了很多知识而焦急得到处请教.

  学不得法.老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,还有些同学上课根本不听,自己另搞一套,结果是事倍功半,收效甚微.

  不重视基础.一些自我感觉良好的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,好高骛远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途卡壳.

  进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备.高中数学很多地方难度大、方法新、分析能力要求高.如根分布与含参变量的讨论,空间概念的形成,二次函数值域的求法,三角公式的变形与灵活运用,排列组合应用题及实际应用问题等.有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,就必然会跟不上高中学习的要求.

  三、明确的学习目的与科学的学习措施

  高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩.

  良好的学习兴趣;古人说过:“知之者不如好之者,好之者不如乐之者.”即说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中.“好”和“乐”就是愿意学,喜欢学,这就是兴趣.兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性.在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者.那么如何才能建立好的学习数学兴趣呢?制定计划使学习目的明确,时间安排合理,不慌不忙,稳打稳扎,它是推动我们主动学习和克服困难的内在动力.但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志.课前自学,对所学知识产生疑问,产生好奇心.自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上.听课中要配合老师讲课,满足感官的兴奋性.听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力.及时复习是高效率学习的重要一环.通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”.独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程.这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”.解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程.解决疑难一定要有锲而不舍的精神.做错的作业再做一遍.对错误的地方没弄清楚要反复思考.实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”.把概念回归自然.所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、平面坐标系的的产生都是从实际生活中抽象出来的.只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确.

  建立良好的学习数学习惯.习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要.建立良好的学习数学习惯,会使自己学习感到有序而轻松.高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用.学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中.另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力.最重要的是,同学们要知道,学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的.为什么高中要学几年而不是几天!许多许多的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度.

  有意识培养自己的各方面能力;数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力.这些能力是在不同的数学学习环境中得到培养的.在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,例如数学第二课堂、数学竞赛、智力竞赛等活动.平时注意观察,譬如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理.其它能力的培养都必须学习、理解、训练、应用中得到发展.特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”,对习题的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,为数学能力的培养开设好各种课型,在这些课型中,学生务必全身心投入、全方位智力参与,最终达到各方面能力的全面发展与提升.

  四、学好数学的基本要求

  记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识.建立数学纠错本.把平时容易出现错误的知识或推理记载下来,以防再犯.争取做到:找错、析错、改错、防错.达到能从反面入手,深入理解正确东西;能由果索因,把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密.记忆数学规律和数学小结论.与同学建立好关系,争做“老师”,组成数学互助组.争做数学课外题,加大自学力度.反复巩固,消灭前学后忘.学会自主学习.

  总之,阅读、观察、思维、记忆、练习等方法是相互联系、相辅相成的,缺一不可.只要我们在教学中能依据学生实际,结合教材特点及教学大纲的要求,遵循教学规律和认识规律,创造有利于指导学生形成科学学习方法的情境,就会使各个环节的指导适合学生的学习,使学生不断改进和完善自己的学习方法.只有学生想学、会学、乐学,才能把书本知识转化为自己的知识,再把理论知识转化为解决实际问题的能力,也才能大面积提高数学教学质量.并且我们应该永远牢记这样一句话:“兴趣和信心是学好数学的最好的老师!”

歌颂党的作文800字2

  现代数学上的三大难题:

  一是有20棵树,每行四棵,古罗马、古希腊在16世纪就完成了16行的排列,18世纪高斯猜想能排18行,19世纪美国劳埃德完成此猜想,20世纪末两位电子计算机高手完成20行纪录,跨入21世纪还会有新突破吗?

  二是相邻两国不同着一色,任一地图着色最少可用几色完成着色?五色已证出,四色至今仅美国阿佩尔和哈肯,罗列了很多图谱,通过电子计算机逐一理论完成,全面的逻辑的人工推理证明尚待有志者。

  三是任三人中可证必有两人同性,任六人中必有三人互相认识或互相不认识(认识用红线连,不认识用蓝线连,即六质点中二色线连必出现单色三角形)。近年来国际奥林匹克数学竞赛也围绕此类热点题型遴选后备攻坚力量。(如十七个科学家讨论三课题,两两讨论一个题,证至少三个科学家讨论同一题;十八个点用两色连必出现单色四边形;两色连六个点必出现两个单色三角形,等等。)单色三角形研究中,尤以不出现单色三角形的极值图谱的研究更是难点中之难点,热门中之热门。

  归纳为20棵树植树问题,四色绘地图问题,单色三角形问题。通称现代数学三大难题。

  高中数学成绩下降是什么原因

  智者形容数学:“思维的体操,智慧的火花”。“最能考察或验证一个人具备智慧多少的一门学问或学科”!在当今知识经济时代,数学正在从幕后走向台前,它与计算机技术的结合在许多方面直接为社会创造价值,推动了社会生产力的发展。数学是人类文化的重要组成部分之一,它已成为公民所必须具备的一种基本素质。数学在形成人类理性思维的过程中发挥着独特的、不可替代的作用。于是呼,冲刺高考时选学理者多多,且发誓要用数学拉动高考总成绩者众多。可喜可贺!作为衡量一个人能力的重要学科---数学。从小学到,对它情有独钟的大有人在,且大都投入了大量的时间与精力.然而我们也不能忽视另一种事实:并非人人都是成功者!许多小学、时期的数学成绩佼佼者,进入高中阶段,第一个跟头就栽在了数学上。对选学文科的成功者的一项调查也表明,虽然他们高中也很想学好数学,可数学成绩就是提不上来,于是折射形成了“最怕”见高中数学老师的现象。这种“惧怕”高中数学的现象目前是比较普遍的,应当引起重视。当然造成这种现象的原因是多方面的。本文仅就学生的学习状态方面浅谈一下影响高中数学成绩下降的原因及解决方法面对众多初中数学学习的成功者沦为高中学习的失败者,笔者对他们的学习状态进行了调研。结果表明:造成成绩滑坡的主要原因有以下几个方面.

  1.被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理:跟随老师惯性运作。没有掌握学习的主动权.其表现有:不定计划,坐等上课,课前不预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”.一切的一切造成没能真正理解所学内容的无奈表态。

  2.学不得法.老师上课一般都要讲述知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课不能做到专心听讲,对要点听不清或听不全。于是笔记记了一大本,问题留了一大堆。而课后呢,又不能及时巩固、总结,找不到知识间的联系,只是一味地赶做作业,乱套题型。对概念、法则、公式、定理一知半解,死记硬背的结果是一味地“机械模仿”。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套。最终是事倍功半,收效甚微.

  3.不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,一贯做法是只求知道怎么做,不去认真演算书写。其心理诱因是仅对难题感兴趣,以示自己的“水平”高。这种好高鹜远,重“量”轻“质”的做法导致的结果是陷入题海,不自拔.而到正规作业或考试中却是演算出错或中途“卡壳”.

  4.不具备进一步学习条件.高中数学与初中数学相比,知识的广度、深度更进一程,能力要求更进一步.这就要求必须掌握基础知识与基本技能,为进一步学习作好充分准备.高中数学很多地方难度大、方法新、分析能力要求高.如:二次函数在闭区间上的最值问题,函数值域的求法问题,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合的应用和实际应用问题解答等.客观上,这些问题的能力要求就是数学学习的分化点,更何况有的数学知识点还是高、初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的.

  所以,高中学生仅仅有想学的念头是不够的,还必须“会学”。要讲究科学的学习策略和方法,以此提高学习效率,变被动学习为主动学习.针对学生学习中出现的上述情况,教师应当采取以加强学法指导为主,化解分化点为辅的.对策:

  1.加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面.

  高中数学学习方法

  编者按:小编为大家收集了“高中数学学习方法:高一升高二数学学习心得”,供大家参考,希望对大家有所帮助!

  度过了貌似很轻松愉快的高一生活,我们昂首阔步来到了高二,对于数学一科,相当多的同学觉得高一阶段的知识非常可怕,不夸张的说高一阶段的知识比整个初中的知识问题还要多。如今到了高二,是不是知识更多更难了呢?

  个人认为并不是这样的,高一阶段的知识强调的是理解,而高二阶段强调的是功力和技巧。差别莘不在于难度,而在于学习的侧重点,可以说高二的很多知识是对高一知识的深化和拓展。举个例子,高一阶段我们学习了函数的相关性质,其中很重要的一条是单调性。高一我们对这个知识点的要求是会用“比较法”判断单调性,还要通过对图像的分析来对函数单调性有直观的感受。这些都昌对函数单调性的理解。到了高二阶段,文科和理科学生都要学习一样新的工具——导数,也就是我们庆不做函数图像,也不用“取点比较”的情况下直接判断函数的单调性和单调区间。而这种处理单调性问题的新方法需要的就是熟练掌握技巧和扎实的基本功。

  还有几何方面,高一阶段我们大多数同学学过了直线和圆,这是解析几何的初步,相信很多同学对于解析几何复杂的运算至今还“意犹未尽”。那么到了高二阶段,我们将要学习更加复杂的三类曲线——椭圆、双曲线、抛物线。运算上难度大大增加,图形的复杂度也大大增加,但是就本质来说,考察的核心还是“在图形中寻找线索,在计算中得到结果”的解题思路。另外立体几何中还要引入空间向量的方法,实际也是把几何问题代数化,使同学用在复杂的立体图形中找辅助线了,当然,空间向量法带来的运算量也是相当大的。

  最后在一些小知识上也有所深化,还记得当初在学习概率的时候,我们实际没有学习任何的计算方法,当时我们算概率的时候只能一个一个的数出来,如果题目的数稍微大一点的话我们就不得不把大量的时间浪费在数数上,在高二我们就会学到高手是怎样数数的,也就是所谓的计数原理,到时候同学业们就会知道“乘法”比“加法”究竟能快多少。也能彻底搞清楚生活中的随机事件里究竟蕴含了怎样的数学原理。

  总体来说,高二数学的难度比高一要大,但是如果同学们在高一的时候对知识有深入的理解的话,高二阶段的知识也就只是个深化练习的过程了,这就要求同学们在高二的时候造成不要放松,这个时期是最需要大量做题,大量练习的时期,错过了这个时期就再也没有机会超越别人了。有人会想高三再努力也不迟,殊不知高三的时候所有好好学习的人都会拼命的做题,拼命地练习,在那时想赶超别人几乎是不可能完成的任务。高三环境是不努力的人必然跌入谷底。努力的人也只可以保证不下降。也就是说想超过别人,走在别人前面,高二已经是最后的机会了。

  对于高一阶段知识掌握的不够扎实的同学,高二也是唯一可能提高的机会了,正像上文所说,高二的知识很多是高一知识的扩展和深化,也就是说如果之前学习的时候没有掌握好,那么高二的学习就既是学习过程又是复习过程。高中阶段学习节奏之快使得一开始落后一点的同学在之后的学习过程中几乎没有什么时间再回过头来重新学习,也就是说如果想补救之知识漏洞,高中阶段唯一可行的办法就是在学习中复习。比如说如果有同学函数没有学好,没关系,高二学习导数的时候会再回来研究函数问题:平面向量没学好,没关系,学习空间向量的进修也可以顺带复习;直线和圆没学好,没关系,圆锥曲线比圆难多了,学好圆锥曲线之后再回去看圆就轻松多了。

  总之,在数学学科,如果你想超越别人,高二是最好的机会,如果你想追上别人,高二是最后的机会。我们将迎来高中整个三年中最困难,最有挑战,也是收益最大的一年。高考中数学的重要性无庸赘述,希望同学们能在高二的时候抓住机会,为了能有一个轻松的高三,也为了能有一个满意的高考而努力。

歌颂党的作文800字3

  高中数学学习方法:其实就是学习解题

  高中数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和处理解题的方式上。

  1、首先是精选题目,做到少而精。

  只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

  2、其次是分析题目。

  解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。

  3、最后,题目总结。

  解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

  ①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

  ②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

  ③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。

  ④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

  【摘要】“高中数学多边形内角和公式”数学公式是解题的要点,要灵活运用,希望下面公式为大家带来帮助:

  设多边形的边数为N

  则其内角和=(N-2)*180°

  因为N个顶点的N个外角和N个内角的和

  =N*180°

  (每个顶点的一个外角和相邻的内角互补)

  所以N边形的外角和

  =N*180°-(N-2)*180°

  =N*180°-N*180°+360°

  =360°

  即N边形的外角和等于360°

  设多边形的边数为N

  则其外角和=360°

  因为N个顶点的N个外角和N个内角的和

  =N*180°

  (每个顶点的一个外角和相邻的内角互补)

  所以N边形的内角和

  =N*180°-360°

  =N*180°-2*180°

  =(N-2)*180°

  即N边形的内角和等于(N-2)*180°

  如何学好数学

  首先和敏捷对于来说固然重要,但良好的可以把效果提高几倍,这是先天因素不可比拟的。学好首先要过的是关。任何事情都有一个由量变到质变的循序渐进的积累过程。

  一.。不等于浏览。要深入了解内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于抓住重点,还可以培养自学,有时间还可以超前学习。

  二.听讲。核心在。1。以听为主,兼顾记录。2。注重过程,轻结论。

  3.有重点。4。提高听课。

  三.。像演电影一样把课堂,整理笔记,

  四.多做练习。1。晚上吃饭后,坐到书桌时,看数学最适合,2。做一道数学题,每一步都要多问个别为什么,不能只满足于课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推 高中历史,一步一步想,每个过程都必不可少,3。不要粗心大意,4。做完每一道题,要想想为什么会想到这样做,建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,5。解题都有固定的套路。6还有大胆的夸奖自己,那是树立信心的关键时刻,

  五.总结。1。要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通。2。建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。3。周末再将一周做的题回头看一番,提出每道题的思路方法。4有问题一定要问。

  六.考前复习,1。前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离只有一个月,把以前错题从头做一遍,最后他数学居然得了147分。2。要重视基础,

  另外,听老师的话,勤学苦练不可少,没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。

  《希腊文集》中的方程问题

  《希腊文集》是一本用诗歌写成的问题集,主要是六韵脚诗。荷马著名的长诗《伊丽亚特》和《奥德赛》就是用这种诗体写成的。

  《希腊文集》中有一道关于毕达哥拉斯的问题。毕达哥拉斯是古希腊著名数学家,生活在公元前六世纪。问题是:一个人问:“尊敬的毕达哥拉斯,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“一共有这么多学生在听课,其中 在学习数学, 学习音乐, 沉默无言,此外,还有3名妇女。”

  我们用现代方法来解:设听课的学生有x人,根据题目条件可列出方程

  这是一个一元一次方程。

  移项,得

  答:毕达哥拉斯有28名学生听课。

  《希腊文集》中还有一些用童话形式写成的数学题。比如“驴和骡子驮货物”这道题,就曾经被大数学家欧拉改编过。题目是这样的:

  “驴和骡子驮着货物并排走在路上。驴不住地往地埋怨自己驮的货物太重,压得受不了。骡子对驴说:‘你发什么牢骚啊!我驮得的货物比你重。假若你的货物给我一口袋,我驮的货就比你驮的重一倍,而我若给你一口袋,咱俩驮和的才一样多。’问驴和骡子各驮几口袋货物?”

  这个问题可以用方程组来解:

  设驴驮x口袋,骡子驮y口袋。则驴给骡子一口袋后,驴还剩x-1,骡子成了y+1,这时骡子驮的是驴的二倍,所以有

  2(x-1)=y+1 (1)

  又因为骡子给驴一口袋后,骡子还剩下y-1,驴成了x+1,此时骡子和驴驮的相等,有

  x+1=y-1 (2)

  (1)与(2)联立,有

  这是一个二元一次议程组。

  (1)-(2)得 x-3=2,

  x=5 (3)

  将(3)代入(2),得y=7。

  答:驴原来驮5口袋,骡子原来驮7口袋。

  《希腊文集》有一道名的题目“爱神的烦恼”。这里有许多神的名字,先介绍一下:爱罗斯是希腊神话中的爱神,吉波莉达是赛浦路斯岛的`守护神。9位文艺女神中,叶芙特尔波管简乐,爱拉托管爱情诗,达利娅管吉剧,特希霍拉管舞蹈,美利波美娜管悲剧,克里奥管历史,波利尼娅管颂歌,乌拉尼娅管天文,卡利奥帕管史诗。

  这道题也是用诗歌形式写在的:

  爱罗斯在路旁哭泣,

  泪水一滴接一滴。

  吉波莉达向前问道:波利尼

  “是什么事情使你如此伤悲?

  我可能够帮助你?”

  爱罗斯回答道:

  “九位文艺女神

  不知来自何方

  把我从赫尔康山采回的苹果,

  几乎一扫而光,

  叶芙特尔波飞快地抢走十二分之一,

  爱拉托抢得更多——

  七个苹果中拿走一个。

  八分之一被达利娅抢走,

  比这多一倍的苹果落入特希霍拉之手。

  美利波美娜最是客气,

  只取走二十分之一。

  可又来了克里奥,

  她的收获比这多四倍。

  还有三位女神,

  个个都不空手,

  30个归波利尼娅,

  120个归乌拉尼娅,

  300个归卡利奥帕。

  我,可怜的爱罗斯。

  爱罗斯原有多少个苹果?还剩下50个苹果。”

  设爱罗斯原来有x个苹果,则6位文艺女神抢走的苹果分别是 。

  可列出方程

  答:爱罗斯原来有苹果3360个。

  选自《中学生数学》20xx年5月下

  20xx高考数学复习三步曲

  编者按:小编为大家收集了“20xx高考数学复习三步曲”,供大家参考,希望对大家有所帮助!

  今年高考文理科的数学试卷总体难度不大,为师生所接受。文科试卷难易程度适中,尤其是填空题和选择题难度不大,解答题难易程度和试题坡度安排都比较合理,有利于考生的发挥,也有利于指导以后的学习。

  理科试卷容易题、中等题和难题比例恰当,注重逻辑思维能力和表达能力(运用数学符号)以及数形结合能力的考查,部分试题新而不难,开放题有所体现,把能力的考查落到实处。但我个人认为,今年试卷对高中数学的主干知识的核心内容考查不到位,但不等于我们今后可以完全不重视。

  抓基础:不变应万变

  把基础知识和基本技能落到实处。唯有如此才能以不变应万变。比如,文科第22题是一道经典题型,考查圆锥曲线上一点到定点距离,既考老师又考学生。所谓考老师是说这样的题型你讲过没有,是怎么讲的?学生的典型错误(以定点为圆心作一个与椭圆相切的圆,再利用判别式等于0)是怎么纠正?正确解法(转化为二次函数在某个区间上的最值)是怎么想到的?只有经过这样的教学环节,学生才能真正理解。所谓考学生是说你自己做错了,老师重点讲评了的经典问题,你掌握了没有?掌握的标准是能否顺利解答相应的变式问题。由于第(3)含有参数,需要分类讨论,能有效甄别考生的思维水平和运算能力。本题以椭圆(解析几何重点内容之一)为载体,考查把几何问题转化为代数问题的能力(这是解析几何的核心思想),以及含参数的二次函数求最值问题(也是代数中的重点和难点),一举多得。

  当然,可能会有人认为这道题形式不新,其实,要求考题全新既无必要,也不可能,只要有利于高校选拔和中学教学就好,不必过分求新、求异。

  理科的第22题相对较难,不少同学反映不好表述。若能从集合的包含关系这个角度考虑,则容易表述,部分考生是直接对两个数列进行分类,由于要用到一些多数学生不熟悉的整除知识,因而感到困难,无法下手。这就体现基础知识和基本技能的重要性。

  尽管今年理科试卷在知识点分布上有些不尽如人意,但复习不能受此影响,仍然要全面、扎实复习,不能留下知识点的死角,相应的技能、技巧要牢固掌握,思想方法都要总结到位,这样才能“不管风吹浪打,胜似闲庭信步”。

  破难题:提升应对力

  如何应对“题梗阻”?考试中遇到不会做的题目很正常,有些同学会因此影响临场发挥。考生进考场就像运动员进运动场,心理素质很重要,把心理辅导和答题技巧融于学习之中。在高三复习过程中,不仅要讲数学知识,同时还要训练学生的心理素质和培养学生的答题技巧,这样才能使学生在考场上应付裕如,出色发挥,考出好成绩。

  理科的22题第(2)卡住不少考生,耽误时间还影响心情,以致第(3)和后面第23题来不及或无心去做,其实,做第(3)题用不到第(2)的结论。而第23题是新编的开放性问题,首先要静心才能读懂题目,而读懂题目至少第(1)、(2)两题不难。要做到这些并不容易,不是临考前“先易后难”一句话学生就能做到,需要在平时教学过程中结合具体问题,训练学生的心理素质,提高其在解题过程中遇到困难时的应变能力,掌握应变策略,才能在考场上“敢于放弃”,从容跳过不会做的题或在解答题中跳步解答,把自己能做的题目先做对,把应得的分得到,这样考试总是成功的,无论分数高低。

  为何时间与成绩不成正比?高三数学就是大量解题,有些重点中学的优秀学生的高考成绩甚至不比高二时考分高,岂不是白学?其实,这是误解。数学讲究逻辑,问题从哪里来(已知),到哪里去(求证),中间有哪些沟沟坎坎(思维障碍),怎么克服(怎样进行等价转化),不仅是照葫芦画瓢的操作性(当然也是必要的)训练,更重要的是以数学知识为载体,让学生学会思考问题的方式方法,还要在解题后对问题作归纳总结,找出规律,有时还要把问题作适当推广,把学生的逻辑思维引到辩证思维。这样经过一年的高三数学学习,学生收获的不仅是分数,还有对人终生受用的思维品质的提高。

  重方法:培养好品质

  有些同学做了许多题,就是成绩提高不见提高,自己和家长都很纳闷。其实学习数学关键是要掌握方法,同时还要培养敢于做难题、新题的胆量和毅力。重复性操作的题目做再多,意义也不大。对待难题的态度是培养学生意志品质的好时机,不能轻易错过(当然也要因人而异)。有些同学往往认为只要弄懂思路,不必解到底。其实,这样的同学往往眼高手低,会而不对,考试成绩忽高忽低,原因在于某些细节处理不当,造成“一失足成千古恨”,事后以粗心搪塞过去。这就需要老师对学生深入了解,结合具体问题给予悉心指导,帮助学生找出真实原因,并制定改正错误的办法,这一过程表面上是帮助学生学会解题,实际上对学生意志品质的培养也就潜移默化地得到了落实。

  我们有理由相信,把解题和人的素质培养有机结合的高三数学教学,不仅能提高学生的解题能力,还能促使他们健康成长,让我们一起努力!

  以上就是为大家提供的“20xx高考数学复习三步曲”希望能对考生产生帮助,更多资料请咨询中考频道。

  生物数学概论

  生物数学是生物学与数学之间的边缘学科。它以数学方法研究和解决生物学问题,并对与生物学有关的数学方法进行理论研究。

  生物数学的分支学科较多,从生物学的应用去划分,有数量分类学、数量遗传学、数量生态学、数量生理学和生物力学等;从研究使用的数学方法划分,又可分为生物统计学、生物信息论、生物系统论、生物控制论和生物方程等分支。这些分支与前者不同,它们没有明确的生物学研究对象,只研究那些涉及生物学应用有关的数学方法和理论。

  生物数学具有丰富的数学理论基础,包括集合论、概率论、统计数学、对策论、微积分、微分方程、线性代数、矩阵论和拓扑学,还包括一些近代数学分支,如信息论、图论、控制论、系统论和模糊数学等。

  由于生命现象复杂,从生物学中提出的数学问题往往十分复杂,需要进行大量计算工作。因此,计算机是研究和解决生物学问题的重要工具。然而就整个学科的内容而论,生物数学需要解决和研究的本质方面是生物学问题,数学和电脑仅仅是解决问题的工具和手段。因此,生物数学与其他生物边缘学科一样通常被归属于生物学而不属于数学。

  生命现象数量化的方法,就是以数量关系描述生命现象。数量化是利用数学工具研究生物学的前提。生物表现性状的数值表示是数量化的一个方面。生物内在的或外表的,个体的或群体的,器官的或细胞的,直到分子水平的各种表现性状,依据性状本身的生物学意义,用适当的数值予以描述。

  数量化的实质就是要建立一个集合函数,以函数值来描述有关集合。传统的集合概念认为一个元素属于某集合,非此即彼、界限分明。可是生物界存在着大量界限不明确的模糊现象,而集合概念的明确性不能贴切地描述这些模糊现象,给生命现象的数量化带来困难。1965年扎德提出模糊集合概念,模糊集合适合于描述生物学中许多模糊现象,为生命现象的数量化提供了新的数学工具。以模糊集合为基础的模糊数学已广泛应用于生物数学。

  数学模型是能够表现和描述真实世界某些现象、特征和状况的数学系统。数学模型能定量地描述生命物质运动的过程,一个复杂的生物学问题借助数学模型能转变成一个数学问题,通过对数学模型的逻辑推理、求解和运算,就能够获得客观事物的有关结论,达到对生命现象进行研究的目的。

  比如描述生物种群增长的费尔许尔斯特-珀尔方程,就能够比较正确的表示种群增长的规律;通过描述捕食与被捕食两个种群相克关系的洛特卡-沃尔泰拉方程,从理论上说明:农药的滥用,在毒杀害虫的同时也杀死了害虫的天敌,从而常常导致害虫更猖獗地发生等。

  还有一类更一般的方程类型,称为反应扩散方程的数学模型在生物学中广为应用,它与生理学、生态学、群体遗传学、医学中的流行病学和药理学等研究有较密切的关系。60年代,普里戈任提出著名的耗散结构理论,以新的观点解释生命现象和生物进化原理,其数学基础亦与反应扩散方程有关。

  由于那些片面的、孤立的、机械的研究方法不能完全满足生物学的需要,因此,在非生命科学中发展起来的数学,在被利用到生物学的研究领域时就需要从事物的多方面,在相互联系的水平上进行全面的研究,需要综合分析的数学方法。

  多元分析就是为适应生物学等多元复杂问题的需要、在统计学中分化出来的一个分支领域,它是从统计学的角度进行综合分析的数学方法。多元统计的各种矩阵运算,体现多种生物实体与多个性状指标的结合,在相互联系的水平上,综合统计出生命活动的特点和规律性。

  生物数学中常用的多元分析方法有回归分析、判别分析、聚类分析、主成分分析和典范分析等。生物学家常常把多种方法结合使用,以期达到更好的综合分析效果。

  多元分析不仅对生物学的理论研究有意义,而且由于原始数据直接来自生产实践和科学实验,有很大的实用价值。在农、林业生产中,对品种鉴别、系统分类、情况预测、生产规划以及生态条件的分析等,都可应用多元分析方法。医学方面的应用,多元分析与电脑的结合已经实现对疾病的诊断,帮助医生分析病情,提出治疗方案。

  系统论和控制论是以系统和控制的观点,进行综合分析的数学方法。系统论和控制论的方法没有把那些次要的因素忽略,也没有孤立地看待每一个特性,而是通过状态方程把错综复杂的关系都结合在一起,在综合的水平上进行全面分析。对系统的综合分析也可以就系统的可控性、可观测性和稳定性作出判断,更进一步揭示该系统生命活动的特征。

  在系统和控制理论中,综合分析的特点还表现在把输出和状态的变化反馈对系统的影响,即反馈关系也考虑在内。生命活动普遍存在反馈现象,许多生命过程在反馈条件的制约下达到平衡,生命得以维持和延续。对系统的控制常常靠反馈关系来实现。

  生命现象常常以大量、重复的形式出现,又受到多种外界环境和内在因素的随机干扰。因此概率论和统计学是研究生物学经常使用的方法。生物统计学是生物数学发展最早的一个分支,各种统计分析方法已经成为生物学研究工作和生产实践的常规手段。

  概率与统计方法的应用还表现在随机数学模型的研究中。原来数学模型可分为确定模型和随机模型两大类如果模型中的变量由模型完全确定,这是确定模型;与之相反,变量出现随机性变化不能完全确定,称为随机模型。又根据模型中时间和状态变量取值的连续或离散性,有连续模型和离散模型之分。前述几个微分方程形式的模型都是连续的、确定的数学模型。这种模型不能描述带有随机性的生命现象,它的应用受到限制。因此随机模型成为生物数学不可缺少的部分。

  60年代末,法国数学家托姆从拓扑学提出一种几何模型,能够描绘多维不连续现象,他的理论称为突变理论。生物学中许多处于飞跃的、临界状态的不连续现象,都能找到相应的跃变类型给予定性的解释。跃变论弥补了连续数学方法的不足之处,现在已成功地应用于生理学、生态学、心理学和组织胚胎学。对神经心理学的研究甚至已经指导医生应用于某些疾病的临床治疗。

  继托姆之后,跃变论不断地发展。例如塞曼又提出初级波和二级波的新理论。跃变理论的新发展对生物群落的分布、传染疾病的蔓延、胚胎的发育等生物学问题赋予新的理解。

  上述各种生物数学方法的应用,对生物学产生重大影响。20世纪50年代以来,生物学突飞猛进地发展,多种学科向生物学渗透,从不同角度展现生命物质运动的矛盾,数学以定量的形式把这些矛盾的实质体现出来。从而能够使用数学工具进行分析;能够输入电脑进行精确的运算;还能把来自名方面的因素联系在一起,通过综合分析阐明生命活动的机制。

  总之,数学的介入把生物学的研究从定性的、描述性的水平提高到定量的、精确的、探索规律的高水平。生物数学在农业、林业、医学,环境科学、社会科学和人口控制等方面的应用,已经成为人类从事生产实践的手段。

  数学在生物学中的应用,也促使数学向前发展。实际上,系统论、控制论和模糊数学的产生以及统计数学中多元统计的兴起都与生物学的应用有关。从生物数学中提出了许多数学问题,萌发出许多数学发展的生长点,正吸引着许多数学家从事研究。它说明,数学的应用从非生命转向有生命是一次深刻的转变,在生命科学的推动下,数学将获得巨大发展。

  当今的生物数学仍处于探索和发展阶段,生物数学的许多方法和理论还很不完善,它的应用虽然取得某些成功,但仍是低水平的、粗略的、甚至是勉强的。许多更复杂的生物学问题至今未能找到相应的数学方法进行研究。因此,生物数学还要从生物学的需要和特点,探求新方法、新手段和新的理论体系,还有待发展和完善。

  20xx年高考数学命题预测之立体几何

  【编者按】近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。

  20xx年高考中立体几何命题有如下特点:

  1.线面位置关系突出平行和垂直,将侧重于垂直关系。

  2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现。

  3.多面体及简单多面体的概念、性质多在选择题,填空题出现。

  4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点。

  此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题

歌颂党的作文800字4

  1、针对各个板块进行学习

  高中数学总的来说可以分为立体几何、函数、数列等13个知识版块。学习的时候,应针对自己较弱的版块,在某一段时间进行集中的强化训练,从中掌握解这类题的基本思路和方法。

  2、重视基础题

  高考的趋势是淡化技巧,重视通法,很多时候一些数学基础很好的同学因为犯了低级错误而拿不到高分。我们平时不能专找难题做,轻视基础题,其实高考中为数不多的难题也就是若干个基础题的组合。克服粗心毛病是每天坚持做一定量的数学题,增加熟练程度,并且有意识地暗示自己集中注意力,提高正确率。

  3、周期回顾错题

  很多过来人都推荐错题本,这种方法很有效但不是适合所有人。同学们可以尝试把所有做错的题做上标记,一周抽一天把本周做错的题再做一遍,避免再犯类似错误。错题的'回顾一定要按时而且要反复,这些前期的工作都推到高三可能时间会比较紧张。改错本上可以没有很多的题目,但是一定要有平时经常忽略的易错点和容易思维断点的知识点。

歌颂党的作文800字5

  一、夯实基础。

  数学的基础就像建筑打地基,是一件看似不起眼但是十分重要的事情。夯实基础有以下几点需要注意:

  1、基础的概念和公式要弄懂。

  高中数学的基础概念和公式大概有十几个专题,各个专题的概念和公式首先要理解、其次是弄懂、然后是练熟。

  2、纸上得来终觉浅,一定要注重练习。

  数学看再多的公式,也还有注重平时的练习。

  书后习题:书后习题时候课后及时做,因为习题比较简单,离考试所需要的难度还有很长一段距离。

  二、不要抄作业。

  很多同学竟然天真的以为,抄作业是一件省时省力的事。但其实抄作业时一件害人害己的行为!还有的学生觉得简单题自己已经完完全全会了,再写作业就是在浪费时间。但一抄了事,其实你错了,不管简单题还是难题你都应该去做。

  简单题是在锻练你的计算能力,让你能够更快的反应出来,节省做题的时间。难题则是锻练你的逻辑思维能力,就算最后你可能做不完整,但你的逻辑思考能力也在一定程度上得到了锻炼,比直接抄答案要好的'多。

  三、勤于思考和提问。

  当老师讲课的时候,最喜欢问学生的就是“这块有没有听明白?”“这块有没有听懂?不会的下课问我!”作为老师,学生的及时反馈是十分重要的!多和数学老师沟通,不懂的多问,他是你的老师,你再怎么差,他都不会拒绝一个找他问问题的学生。

  志愿填报的基本模式是什么

  专业(类)+院校

  采取一所院校一个招生专业(类)为一个志愿,实行平行志愿投档的统一录取模式。

  模式特点:专业平行志愿是同一类别、同一段次中若干具有相对平行关系的专业(类)志愿,以一所院校的一个专业(类)为志愿单位,按照“分数优先、遵循志愿”进行投档。

  填报须知:直接投档到某院校某专业(类),不存在专业服从调剂,不用担心被调剂到不喜欢的专业。考生既可选择不同高校的同一专业,也可选择同一高校的不同专业,还可以选择不同专业下的不同高校。

  院校+专业组

  由院校根据人才培养需要和不同专业(含专业或大类)的科目要求设置,是本科志愿填报的基本单位。

  模式特点:一所院校可设置一个或多个院校专业组,每个院校专业组内可包含数量不等的专业,同一院校专业组内各专业的科目要求需相同。同一院校科目要求相同的专业可分设在不同的院校专业组中,但这些院校专业组的科目要求须相同。

  填报须知:该模式以一个院校加一个专业组为一个志愿单位,将每一个志愿细化到专业组。考生根据自己的意愿,可选择某个学校的某个专业组作为志愿,专业调剂限于同一专业组内调剂。

  平行志愿

  指考生在填报高考志愿时,可在指定的批次同时填报若干个平行院校志愿。

  模式特点:按考生成绩从高到低进行排序,分数高的学生先投档。某一个考生投档时,先看其成绩是否够A院校提档线;如不够,再看B院校;如此类推,直到检索到考生分数符合的志愿院校后,将其投档至该院校。

  填报须知:检索考生填报的院校志愿时,是按逻辑顺序即A、B、C、D......院校依次进行的。当考生总分符合首先被检索的A院校投档条件时,且A校有计划余额,该生即被投到A院校。填报时,应在各志愿院校之间拉开适当梯度。

  顺序志愿

  在同一个录取批次设置的多个院校志愿有先后顺序,每个志愿只包括一所院校。

  模式特点:把考生的高考志愿作为录取投档的第一要素,最大程度满足考生的志愿要求。投档时对选报同一志愿院校的考生按院校确定的录取原则、调档比例从高分到低分进行投档。

  填报须知:选报同一志愿院校的考生,按院校确定的调档比例从高分到低分进行投档,第一志愿录取结束后再进行第二志愿投档录取。例如考生将A校放在第二志愿,如果A校一志愿已经招满且不预留招收二志愿的名额,那么无论该生分数多高,档案都不会投向A校。

  高考如何填写志愿

  高考志愿(不含艺术、体育类专业)安排在通知考生成绩之后填报,其中本科提前批志愿填报截止时间为6月24日17∶00,其余本科志愿(含自主招生志愿)填报截止时间为6月28日12∶00,专科志愿在7月2日12∶00前完成填报。对口招生的职教师资和高职班志愿均在6月28日12∶00前完成填报。

  主要填的都是号码,我们4102河北是分批次填1653报的内:

  提前批,本科一批容a,本科一批b,本科二批a......

  每个批次又有第一志愿,第二志愿的院校代码

  院校下面又有六个专业代码

  还有服从调剂选项。

  由院校专业没有系。关键是选择院校和专业。只要认真,填报看似神秘其实很少有因填报而失误的,那都得复查2遍呢。

歌颂党的作文800字6

  一、“弃重求轻”,培养兴趣:女生数学能力的下降,环境因素及心理因素不容忽视。目前社会、家庭、学校对学生的期望值普遍过高。而女生性格较为文静、内向,心理承受能力较差,加上数学学科难度大,因此导致她们的数学学习兴趣淡化,能力下降。

  二、“笨鸟先飞”,强化预习:要提高课堂学习过程中的数学能力,课前的预习至关重要。教学中,要有针对性地指导女生课前的预习,可以编制预习提纲,对抽象的概念、逻辑性较强的推理、空间想象能力及数形结合能力要求较高的内容,要求通过预习有一定的了解,便于听课时有的放矢,易于突破难点。认真预习,还可以改变心理状态,变被动学习为主动参与。

  三、“开门造车”,注重方法。

  教师要指导女生“开门造车”,让她们暴露学习中的问题,有针对地指导听课,强化双基训练,对综合能力要求较高的问题,指导她们学会利用等价转换、类比、化归等数学思想,将问题转化为若干基础问题,还可以组织她们学习他人成功的经验,改进学习方法,逐步提高能力。

  四、“扬长补短”,增加自信:教学中要注意发挥女生的长处,增加其自信心,使其有正视挫折的`勇气和战胜困难的决心。特别要针对女生的弱点进行教学,多讲通解通法和常用技巧,注意速度训练,分析问题既要“由因导果”,也要“执果索因”,暴露过程,激活思维;注重数形结合,适当增加直观教学,训练作图能力,培养想象力;揭示实际问题的空间形式和数量关系,培养“建模”能力。

歌颂党的作文800字7

  一、“弃重求轻”,培养兴趣:女生数学能力的下降,环境因素及心理因素不容忽视。目前社会、家庭、学校对女生的期望值普遍过高。同时,女生性格较为温和、内向,心理承受能力相对较差,再加上数学学科的难度较大,导致了她们对数学学习兴趣的减退,并且数学能力下降。我已根据您的要求修改了原始内容,如上所示。

  二、为了提升数学能力,预习课前至关重要。在教学过程中,我们要有针对性地引导女生进行预习,并可以制定预习提纲,重点指导抽象概念、逻辑推理、空间想象和数形结合等需要较高能力的内容。通过预习,学生可以在听课时更好地理解和应用知识,有助于突破难点。认真预习还可以改变学生的心理状态,从被动学习转变为主动参与。此外,在教学中我们也要注重方法,避免“开门造车”,确保学生掌握正确的学习方法。

  教师要指导女生“开门造车”,让她们暴露学习中的问题,有针对地指导听课,强化双基训练,对综合能力要求较高的问题,指导她们学会利用等价转换、类比、化归等数学思想,将问题转化为若干基础问题,还可以组织她们学习他人成功的经验,改进学习方法,逐步提高能力、

  四、“发现优点,增加自信”:在教学中应注重发掘女生的擅长之处,提升她们的自信心,使她们具备面对挫折的勇气和战胜困难的'决心。同时,特别关注女生的薄弱环节,多讲解通用解法和常用技巧,并加强速度训练,既要从结果找原因,也要从结果推导原因,通过揭示解题过程来激发思维能力。此外,注重数学与几何的结合,适当增加直观教学,培养作图能力和想象力;还要揭示实际问题的空间形式和数量关系,培养建模能力。

歌颂党的作文800字8

  1、一本书

  就是教科书,这是基础的基础,但是被中等生最忽视的。笔者高中时,先看教科书再做题,所以往往同学做到第5题,我才刚开始,但当我做了20题时,反过来发现同学做到第17题,这就是磨刀不误砍柴工。最后不仅省时,而且比同学多巩固了书本知识,然后从书本原理到题目及从题目到原理走了一个来回,培养了以理论解决实际问题的能力,提高了以不变应万变的能力。一句话,省时又高效。为摆脱题海打下了基础。

  2、两方法

  1)找到已知与求解的“桥梁”。主要针对中等题及难题,利用已知,推一步或几步,完成转化,从求解往后推几步,看看还缺什么,再去回忆脑袋里的知识点及解过的.经典题,把已知与求解的差距补上,这个就是“桥梁”原理。

  2)有些题按上述方法还遇到困难,可能需要另辟蹊径,如从定义出发或需要再审视已知条件,可能还未用尽已知条件或有些暗含的已知条件未挖掘出来。

  3、三步骤

  1)先看教科书,真正搞懂课本例题,并做课后练习(虽然看上去很简单,但是实质上就是要你检查自己是否真的掌握这些基本知识点。),

  2)利用历年高考真题, 这些题很有价值,先掩着答案,根据你之前课本学的基础内容,尝试自己亲自动手做一下,再对答案,明白其原理,真正弄懂它,看看能否举一反三,可问老师及同学,也可请家教,最后达到触类旁通。

  3)同步练习,必须紧跟课程,不能赖下来的,一步一个脚印去做。

  数学知识点较多,容易忘记,但以上的步骤你都能做到的话,那么就不那么容易遗忘,即使忘记,你也可以翻阅以前的内容重新巩固一遍。

  4、四层次

  1)基本知识点。含概念、定义、定理、公式等,这是基础,这个不过关,其他免谈。笔者平时先看教科书,就是这个道理。--这部分,虽然重要,但笔者辅导不作重点,只是检查与提醒,因为可自学及问自己老师同学。会这个的人太容易找到了。

  2)数学思想与数学技能。数学思想如方程函数思想、数形结合思想、对称思想、分类讨论思想,化归思想;数学技能如配方、待定系数法等。笔者由于这方面强,故多年不做题或见到陌生题均不慌,因为这些思想能力是深入骨髓的。

  3)数学模型与中间结论。数学模型就是具体题目的解题套路,中间结论可使学生减少解题步骤,加快解题速度,减少出错机会。这些有了2数学思想与数学技能,就能自己推导出来,但要注意总结与积累。

  4)特殊解题技巧。这个要求以上3方面都较强,聪明加灵感,平时善于总结与归纳,看透事物本源,熟能生巧,触类旁通。故对中等生不作过高要求,所谓可遇而不可求。笔者对高考实考试卷的选择与填空,特别是选择,有相当部分,有的试卷甚至一半以上可在题读完后,几秒得出正确答案。凭的就是这个本事。

歌颂党的作文800字9

  一.培养浓厚的兴趣

  高中的数学概念抽象、习题繁多、教学密度大,因此,高一过后,一些同学对数学望而生畏。

  数学的学习其实不会很难,关键是你是否愿意去尝试。当你敢于猜想,说明你拥有数学的思维能力;而当你能验证猜想,则说明你已具备了学习数学的天赋!认真地学好高二数学,你能领悟到的还有:怎么用最少的材料做满足要求的物件;如何配置资源并投入生产才能获得最多利润;优美的曲线为什么可以和代数方程建立起关系;为什么出车祸比中奖容易得多;为什么一个年段的各个班级常常出现生日相同的同学……

  当你陷入数学魅力的“圈套”后,你已经开始走上学好数学的第一步!

  二.学会预习和听课

  对课本上的内容,上课之前最好能够首先预习一下,否则上课时有一个知识点没有跟上老师的步骤,下面的就不知所以然了,如此恶性循环,就会开始厌烦数学,对学习来说兴趣是很重要的。课后针对性的练习题一定要认真做,不能偷懒,也可以在课后复习时把课堂例题反复演算几遍,毕竟上课的时候,是老师在进行题目的演算和讲解,学生在听,这是一个比较机械、比较被动的接受知识的过程。也许你认为自己在课堂上听懂了,但实际上你对于解题方法的理解还没有达到一个比较深入的程度,并且非常容易忽视一些真正的解题过程中必定遇到的难点。“好脑子不如赖笔头”。对于数理化题目的解法,光靠脑子里的大致想法是不够的,一定要经过周密的笔头计算才能够发现其中的难点并且掌握化解方法,最终得到正确的计算结果。

  三.及时复习和小结:

  实际上无论你是否完成了入门,或是已经进入到了一个更高的境界,你要做的另外一件事就是学好基础知识。这点最重要。数学的基础知识不光包括理解定义,熟记公式,会基本的公式运用,还包括解题步骤、相当的解题经验,当然还有计算准确性。

  下面逐个说一下:

  (1)理解定义:理解定义并不是背,有很多定义我也不记得,理解就行,没人让你默写某某东西的定义。

  (2)熟记公式:这个不用说了吧。

  (3)会基本的公式运用:不包括灵活运用。

  (4)解题步骤:这也不能轻视,从最已开始学习时就要注意。步骤和逻辑性有直接关系,如果你逻辑性强,那你步骤写的一定不会太差,反过来是否成立我没试过。

  (5)相当的解题经验:这个最重要,但不是死做题。有些题,你不会,但你做过,或者做过类似的,这样你就能照葫芦画瓢解出来,从成绩上看这跟你会是一样的。很诱人吧。

  (6)计算准确性:马虎,也算非智力性错误的一种,这一直都是一个问题。实际上我也马虎,马虎了5年+4年+3年,始终也没有解决,高考时莫名其妙的没马虎。但是像我这样幸运的人实在是很少,大家不要抱侥幸心理。

  这些我相信,大家无论天资如何,一定都能做到,如果你做不到,只等说明你学习不努力或心态不正或有其他教育以外的问题。

  要善于总结归类,寻找不同的题型、不同的知识点之间的共性和联系,把学过的知识系统化。举个具体的例子:高一代数的函数部分,我们学习了指数函数、对数函数、幂函数、三角函数等好几种不同类型的函数。但是把它们对比着总结一下,你就会发现无论哪种函数,我们需要掌握的都是它的表达式、图象形状、奇偶性、增减性和对称性。那么你可以将这些函数的上述内容制作在一张大表格中,对比着进行理解和记忆。在解题时注意函数表达式与图形结合使用,必定会收到好得多的效果。

  最后就是要加强课后练习,除了作业之外,找一本好的参考书,尽量多做一下书上的练习题(尤其是综合题和应用题)。熟能生巧,这样才能巩固课堂学习的效果,使你的解题速度越来越快。

  四.学习解题

  我们知道,学习数学需要通过复习来循序渐进地提高自己的数学能力。有的同学简单地把复习理解为做大量的题目,也有的同学认为复习就是记忆、背诵课本中的有关概念、定理、公式等。可见,许多同学对复习的认识还存在误区:没有真正认识到数学学科的特点,在复习方法上没有和其他学科区别开来。

  数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的'关键在于对待题目的态度和处理解题的方式上。

  ——首先是精选题目,做到少而精。只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

  ——其次是分析题目。解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。

  ——最后,题目总结。解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

  ①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

  ②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

  ③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。

  ④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

  五.强化运算能力

  多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

歌颂党的作文800字10

  摘要:课本是考试内容的载体,是高考命题的依据,也是智能的生长点,是最有价值的资料,有相当多的高考试题是课本中基本题目的直接引用或稍作变形得来的,其用意就是引导我们要重视基础,切实抓好“三基”(基础知识、基本技能、基本方法)。最基础的知识是最有用的知识,最基本的方法是最有用的方法。

  关键词:知识,技能,方法

  近年来,数学复习资料名目繁多,许多教师过于依赖各类资料,在复习中忽视了书本中的基础知识。这中做法实际上相当于在复习中失去了基石,现谈谈本人的一些看法。

  一、重视基础知识、基本技能、基本方法

  课本是考试内容的载体,是高考命题的依据,也是智能的生长点,是最有价值的资料,有相当多的高考试题是课本中基本题目的直接引用或稍作变形得来的,其用意就是引导我们要重视基础,切实抓好”三基”(基础知识、基本技能、基本方法)。最基础的知识是最有用的知识,最基本的方法是最有用的方法。在复习过程中,我们必须重视课本,夯实基础,以课本为主,重新全面地梳理知识,方法,注重知识结构的重组与概括,揭示其内在联系与规律,从中提炼出思想方法。在知识的深化过程中,切忌孤立对待知识,方法,而应自觉地将其前后联系,纵横比较、综合,自觉地将新知识及时纳入已有的知识系统中去,注意通用通法,淡化特殊技巧。

  近年来高考数学试题的新颖性,灵活性越来越强,不少学生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而忽视了基础知识、基本技能、基本方法的复习。其实近几年的高考命题已经明确告诉我们:基础知识、基本技能、基本方法始终是高考数学考查的重点。选择题、填空题以及解答题中的基本常规题已达到整份试卷的80%左右,对基础知识的要求也更高、更严了。如果我们在复习中过于粗疏,或在学习中对基础知识不求甚解,都会导致在考试中判断错误。其实定理、公式推证的过程就蕴涵着重要的解题方法和规律,如果没有发掘其内在的规律就去做题,试图通过大量地做题去“悟”出某些道理,只会事倍功半。

  二、抓刚务本,落实教材

  数学复习任务重,时间紧,但决不能因此而脱离教材。相反,要紧扣大纲,抓住教材,在总体上把握教材,明确每一章、每一节的知识在整体中的地位、作用。

  近年来的试题都与教材有着密切的联系,有的是直接利用教材中的例题、习题、公式定理的证明作为高考题;有的是将教材中的题目略加修改、变形后作为高考题;还有的是将教材中的题目合理拼凑、组合作为高考题。因此,一定要高度重视教材,针对教材所要求的内容和方法,把主要的精力放在教材的落实上,切忌刻意追求偏题、怪题和技巧过强的难题。

  学生对基础知识和基本技能的理解与掌握是数学教学的基本要求,也是评价学生学习的基本内容。高中数学中的基础知识、基本技能主要包括②,基本的数学概念、数学结论的本质,概念、结论等产生的背景、应用,以及其中所蕴涵的数学思想和方法,和它们在后续学习中的作用。同时,还包括数学发现和创造的一些基本过程。

  高中数学考试的内容选取,要注重对数学本质的理解和思想方法的把握,避免片面强调机械记忆、模仿以及复杂技巧。尤其要把握如下几个要点:

  1、关于学生对数学概念、定理、法则的真正理解。尤其是,对数学的理解,至少包括能否独立举出一定数量的用于说明问题的正例和反例。

  2、关于不同知识之间的联系和知识结构体系。即高中数学考试应关注学生能否建立不同知识之间的联系,把握数学知识的结构、体系。

  3、对数学基本技能的考试,应关注学生能否在理解方法的基础上,针对问题特点进行合理选择,进而熟练运用。同时,注意数学语言具有精确、简约、形式化等特点,适当检测学生能否恰当地运用数学语言及自然语言进行表达与交流。

  三、加强通性通法的总结和运用

  在复习中应淡化特殊技巧的.训练,重视数学思想和方法的作用。常用的数学思想方法有:

  1、函数思想。中学数学,特别是中学代数,可谓是以函数为中心(纲)。集合的学习,求函数的定义域和值域打下了基础;映射的引入,使函数的核心----对应法则更显现其本质;单调性、奇偶性、周期性的研究,是对映射更深入更细致的刻画;函数与反函数的研究,辨证全面地看待事物之间的制约关系。数列可以看成是特殊的函数。解方程f(x)=0,就是求函数y=f(x)的零点;解不等式f(x)0或f(x)0,就是求函数y=f(x)取正值、负值的区间;函数极限的研究,导数、微分、积分的研究,也完全是以函数为对象,为中心的。一句话,抓住了函数,就牵起中学代数的“牛鼻子”。

  2、数形结合思想。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与树轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。

  数形结合的重点是“以形助数”。运用数形结合思想,不仅易直观发现解题途径,而且能避免复杂的计算与推理。大大简化了解题过程。这在解选择题、填空题中更显其优势,要注意培养这种思想意识,要争取做到“胸中有图,见数想图”,以开拓自己的思维视野。

  3、分类讨论思想。所谓分类讨论,就是当问题所给的对象不能统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的答案。实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。

  分类原则:分类的对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。

  分类方法:明确讨论对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合得出结论。

  4、转化思想。将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法变换,化归为在已知知识范围内已经解决或容易解决的问题的思想叫做化归与转化的思想。化归与转化的思想的实质是揭示联系,实现转化。

  熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。“抓基础,重转化”是学好中学数学的金钥匙。

  四、帮助学生打好基础,发展能力

  教师应帮助学生理解和掌握数学基础知识、基本技能,发展能力。具体来说:

  1、夯实基础、加强概念教学:历年高考都有40%左右分值比重的试题综合性较弱、难度较低、贴近教材,解答过程较为直观且命题方式相对稳定,用以考查学生基础知识的掌握情况。有40%左右分值比重的试题综合性较强,命题较为灵活,难度相对较高,用以考查学生的基本能力。知识是基础,能力的提高和知识的丰富是相互伴随的过程,要意识到基础知识的重要性,常规教学中一味求难求变的作法是不可取的,抓住基础知识是全面提高教学质量和高考成绩的关键。数学科学建立在一系列概念的基础之上,数学教学由概念开始,概念教学是基础的基础。数学具有高度抽象的特点,概念的形成是教学工作的难点。知识的发生发现过程是概念的形成过程,挖掘并精化知识的发生发现过程,直观展现知识的发生背景和前人的思维过程,是概念教学的关键。数学学习要理解诸多的概念及概念间的关系,概念教学贯穿于数学教学工作的始终。探讨概念间的关系,展示概念间的联系,把诸多概念有机地串接起来,有利于加深学生对概念的理解,有利于“辩证、普遍联系”的认识观念的形成,有利于探寻、解决问题能力的提高和数学思想方法的形成。

  2、强调对基本概念和基本思想的理解和掌握。教学中应强调对基本概念的理解和掌握,对一些核心概念要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。

  3、重视基本技能的训练。熟练掌握一些基本技能,对学好数学是非常重要的。在高中数学课程中,要重视运算、作图、推理、处理数据以及科学计算器的使用等基本技能训练。但应注意避免过于繁杂和技巧性过强的训练。

  随着时代和数学的发展,高中数学的基础知识和基本技能也在发生变化。一些新的知识就需要添加进来,原有的一些基础知识也要用新的理念来组织教学。因此,教师要用新的观点审视基础知识和基本技能,并帮助学生理解和掌握数学基本知识、基本技能和基本思想。对一些核心概念和基本思想(如函数、空间观念、数形结合、向量、导数、统计、随机观念、算法等)要在整个高中数学的教学中螺旋上升,让学生多次接触,不断加深认识和理解。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质,注重体现基本概念的来龙去脉。在新课程中,数学技能的内涵也在发生变化,在教学中要重视运算、作图、推理、数据处理、科学计算器和计算机的使用等基本技能训练,但应注意避免过于繁杂和技巧性过强的训练。

歌颂党的作文800字11

  很多学生以优异的数学成绩进入了向往已久的高中,但却有很多学生仍是以原来的思维和方法来学习高中数学,这往往造成了数学成绩的下滑。尽管很多学生仍很用功,但成绩却很不如意,并且在初三升入高中的.学生中,都认为高中数学枯燥无味,感觉知识点多,学习数学的压力很大。所以在这里就初中数学和高中数学的区别和联系来给新高一学生和家长们提几点建议:

  一、初中数学形象化,便于学生理解,并且联系生活实际比较多。对于这些知识点,只要用心一些,很是比较容易把握的,运用起来也会比较自如。而高中数学相对来说则比较抽象,学生经常不能很好的把所学知识理解透彻,甚至进入理解误区,如此,便造成运用定理和公式不熟练或运用错误的现象。针对这些情况,建议家长由专业教师引导一下,深入浅出,为高中数学后续课程的学习打下坚实的基础;

  二、初中数学浅显化,学生只要认真思考,理解其所表达的意思。而高中很多知识点则较为隐晦,学生体会不到所表达的意思。比如:初中所学的二次函数,比较多的偏向于感性认识,学生们往往能较好地掌握,但是进入高中之后,高中数学对二次函数提出了新的更高的要求,比较偏向于理性思维时,某些学生便会适应不过来。

  三、初中数学知识容量相对较小。总体而言,初中数学知识点较少,学生能够通过三年的系统学习,比较好地掌握。高中数学则知识点众多,而每个章节所包含的小知识点则更是繁杂,学生们则往往难以适应。

  综上,建议学生与家长以谨慎、认真的态度去对待初三升高中这一蜕变的阶段,因为这是我们迈进高中的第一步,只有第一步走踏实了,我们才能走过高中,踏进高考的大门!

歌颂党的作文800字12

  1、积极调整心态。

  对于高一学生暂时学数学有困难的问题,千万不要产生畏难情绪,因为大部分的高中生都遇到过这种问题。困难是暂时的,只要树立好学习数学的信心,找好学习数学的方法,就一定能学好数学的。高一学生要调整好自己的心态,学会对自己的学习情况进行评估,分数可以直观的反应出自己的一些情况,只有明白自己的问题,才能有效的纠正它。

  2、多动笔、勤做题。

  在高中的数学课堂上,老师的板书还是挺多的。这个时候需要高一学生跟着老师勤动笔,勤做题。因为不动脑跟不上老师的思路,不动笔,就不会知道下一步是什么。多动笔,不仅是需要学生们几段,更重要的是通过解题步骤的书写,理清自己的思路。

  3、重视概念的`学习。

  高中数学中有很多概念知识,是数学重要的组成部分,很多时候对于数学概念的了解,不能只局限于字面上,要学会从正面理解概念,还要能举出反例,甚至是从符号,图形角度来理解概念。

  4、做题后反思。

  高一学生一定要明确一点,就是现在正做着的题目,一定不是考试的题目。所以做题过程中最重要的是题目的解题思路和方法。所以要把自己做过的每道题都加以反思。总结出这多提是什么内容,解题方法是什么,运用了哪些数学知识。时间一长自然会提高数学成绩。

歌颂党的作文800字13

  高中数学学习方法:

  1、认识高中数学的特点。

  高中数学是数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象。

  2、正确对待学习中遇到的新困难和新问题。

  在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。

  3、要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式。

  数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能依着老师的惯性运转,被动地接受所学知识和方法。

  4、要养成良好的个性品质。

  要树立正确的学习目标,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心,实事求是的科学态度,以及独立思考、勇于探索的.创新精神。

  5、要养成良好的预习习惯,提高自学能力。

  课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。预习也叫课前自学,预习的越充分,听课效果就越好;听课效果越好,就能更好地预习下节内容,从而形成良性循环。

  6、要养成良好的审题习惯,提高阅读能力。

  审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。

歌颂党的作文800字14

  1.审题与解题的关系

  有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量?如“至少”,“a>0”,自变量的取值范围等 ,从中获取尽可能多的信息,才能迅速找准解题方向。

  2.“会做”与“得分”的关系

  要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。

  3.快与准的关系

  只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

  4.难题与容易题的'关系

  拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

歌颂党的作文800字15

  高三数学怎么学?其实,这是一个吃“牛轧花生糖”的过程。我想借用这5个字“牛、轧(同音“扎”,即扎实)、花生(谐音“化生”,即数学解题中的“化生为熟”策略)糖(甜蜜)”,来谈谈我对大家学习高三数学的建议。

  提起“牛”,人们会说牛气冲天、老黄牛、牛劲。是的,我们学习就是要一股牛气,要有一股初生牛犊的精神,要有牛气冲天的干劲,要不畏难、不怕苦,要勤于思考、敢于实践,要把自卑心理一扫而光,代之而起的是高涨而持续的学习热情。

  牛在紧要关头不仅有冲劲,在平时耕田拉车中还特有韧劲,我们特别需要能长久维持的韧劲,它是我们成功的必要条件,有了这股韧劲,就能克服一切困难,集中精力,发奋读书,即使身体小有不适,也能尽量坚持学习,这是对自己意志的考验。

  “轧”音同 “扎”,寓意是学习要扎实。数学学习的扎实表现在:

  (1)不满足于听懂、看懂,关键要能准确地书写表达出来,还要能举一反三,否则,没有真懂。

  (2)运算要既快又准。速度慢了不行,但算错了更不行!

  要做到这两条,必须在课堂上认真听讲、用心思考、勤于演算、善于笔记。在课后还要通过一定数量模仿性练习、提高性练习等高质量作业才能牢固掌握,做作业不互相对答案,不抄袭,遇到不懂问题可以相互讨论,但懂了以后自己再独立做。还要自觉学会归纳解题成功的经验和总结失败的教训,做到吃一堑,长一智。

  花生的果实生长在地下,默默地被大地滋润着,直到成熟才离开土地,营养价值极高。滋润着学生成长的是国家以及你们的父母和老师。

  “花生”的“生”单独字面有陌生、生疏的意思,“花”有相间的意思,此处借用“花生”是想说在学习过程中会时常出现一些新的问题和困难,这需要我们正确的态度去对待,是强调基础差、问题难,还是知难而进,用心思考,不耻下问,是对每个同学学习毅力的考验。

  “花生”的谐音是“化生”,借指数学中常用的方法——化生为熟。这是数学学习中解决问题的一条重要途径,是学会分析问题和解决问题的重要方法。

  糖是大家喜欢的食品,它给我们辛苦的`学习带来一丝甜意,我希望大家在繁重的学习间隙,可以唱支歌、跳曲舞来调节生活,来体验学习的甜蜜,预示同学们三年高中生活有一个甜美的结果。但是大家知道,葡萄在成熟之前是不甜的,这预示着,在我们最后几个月的学习中可能会有很多感触,那种时而忽然开朗,眼前一片光明,时而百思不解,眼前一片黑暗,那种纠结、烦躁、甚至愤怒,没有亲身经历的人是难以体会的!这样的经历是一个人成长、成熟所必须经历的,我们只能面对,没有逃避的余地,这或许是“先苦后甜”的深刻含义吧。

  吃了今天的“牛轧花生糖”,我相信今后你们学习信心更大,克服困难的意志更坚强,解决问题方法更多,成绩提高得更快,明天的日子会更甜!

【歌颂党的作文800字】相关文章:

歌颂党的作文800字07-04

(通用)歌颂党的作文800字07-04

歌颂党的作文800字(常用15篇)07-04

歌颂友谊的作文01-05

歌颂亲情的作文01-16

歌颂作文300字07-29

[优]歌颂亲情的作文03-15

歌颂作文600字08-14

红领巾心向党作文400字05-24