我得到了表扬作文350字

时间:2024-07-07 07:02:00 350字作文 我要投稿
  • 相关推荐

(合集)我得到了表扬作文350字15篇

  在日常生活或是工作学习中,大家都有写作文的经历,对作文很是熟悉吧,借助作文人们可以反映客观事物、表达思想感情、传递知识信息。那么你有了解过作文吗?下面是小编为大家收集的我得到了表扬作文350字,欢迎阅读与收藏。

(合集)我得到了表扬作文350字15篇

我得到了表扬作文350字1

  一.说教材。

  圆锥的认识和体积计算是《人教版》内容第十二册4143页的内容。本节

  课是在认识了圆柱体的基础上继续学习的内容。学习圆锥可以进一步加强学生对立体图形的认识。为了帮助学生认识圆锥体,理解和掌握圆锥体的体积计算公式,教材是从观察入手,到实践操作,让学生通过操作把抽象的概念具体化、形象化。让圆锥体的有关概念,体积计算公式从实践中认识,然后运用到实际生活中去。

  根据教材内容,确定教学目标:

  1.通过观察和演示,使学生认识圆锥体,掌握它的特征和体积计算公式,并能根据具体问题灵活应用计算方法。

  2.让学生理解圆锥体积公式的推导过程,认识圆柱体和圆锥体之间的关系,渗透辨证思维的方法。

  3.通过实际操作,培养学生动脑、动手的能力,让学生养成严谨、仔细的良好习惯。

  4.培养学生观察、比较、分析、判断推理的能力,发展学生空间观念,提高学生想象能力和逻辑思维能力。

  教学重点难点和关键:

  1.重点:(1)认识直圆锥并掌握它的一些特征。(2)圆锥体的体积计算。

  2.难点:(1)圆锥体体积计算公式的推导。(2)解答有关直圆锥体实物体

  积。

  3.关键:要充分应用直观教具和电脑,进行演示和实验,有目的、有步骤地引导学生观察、思考,从而推导出计算公式和有关概念。

  二.说教法和学法。

  根据教材的内容和学生的年龄特征,我采用以下教法和学法:

  1.直观操作,突破难点。

  在这节课中,充分运用实物让学生认识直圆锥,通过圆锥体的点,线,面,

  认识圆锥体的底和高。发挥学生四人小组的作用,大胆放手让学生动手操作,推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。通过动手操作,让学生用多种感官去感知事物,获取感性知识,使操作与思维紧密结合,加深对直圆锥及体积的认识。

  2.运用电脑课件的动感突出重点。

  圆锥体的认识是本节课的重点,为了让学生充分地认识圆锥体,把生活中

  的锥形物体放在屏幕上(如小麦堆,漏斗等),运用电脑闪动形式认识圆锥体的底面,侧面,顶点,高。认识圆锥体积的大小也是本节的重点和难点内容,为了突出重点,突破难点,着重引导学生去探索等底等高的圆锥体与圆柱体体积之间的关系,充分运用电脑屏幕显示操作推导过程,把静态转化为动态,加深学生对所学知识的直观印象,生动、形象、具体的教学使学生能够由具体到抽象,由感觉到知觉进行顺利的过渡。

  3.注意培养学生的发散性思维和创新意识。

  创新教育是素质教育的核心,因此在课堂教学中注意培养学生的发散性思

  维和创新意识。

  在认识圆锥体的过程中,引导学生思考,发现,认识圆锥体的特征。在认识圆锥体的体积的过程中,引导学生积极地去和等底等高的圆柱体的体积进行比较,通过对比、分析、综合、归纳出圆锥体的体积计算公式。学生在充分认识了圆锥体和圆柱体之间的关系的基础上,从不同方面对学生进行练习,启发学生做一些有创新能力的题目,让学生充分发挥自己创造力的空间,培养学生发散性思维能力。

  三. 说教学程序设计。

  悬念引入。

  首先让学生回忆近来学习了什么立体图形(圆柱体),在电脑屏幕上展示圆

  柱体和圆锥体的实物,让学生认识圆柱体,说出圆柱体的体积公式,然后提问:屏幕上还有一些什么图形呢?(这样做一方面可以让学生初步感知圆锥体,另一方面既能激发学生的学习兴趣,又能培养学生独立思考的能力。)

  探究新知。

  1.圆锥的认识。

  (1)圆锥的'组成。

  ①面。圆锥有几个面?哪两个面?[教师板书:圆锥有两个面(一个侧

  面,一个底面)。]

  ②棱。提问:圆锥有几条棱?是什么样的一条棱?[教师板书:圆锥

  有一条棱(一条封闭的曲线)。]

  ③顶点。提问:圆锥有没有顶点?有几个顶点?[教师板书:圆锥一

  个顶点。]

  ④高。提问:圆锥的高在哪里?教师出示圆锥教具(电脑显示),把它一分为二,让学生观察,得出高的概念。[教师板书:从圆锥的顶点到底面圆心的距离是圆锥的高。]

  提问:圆锥旁边(手示圆锥侧面)这个长度是不是圆锥的高?圆锥有几条高?(一条高)

  (2)圆锥的特征。

  ①一个底面是圆形。

  ②一个侧面展开图是扇形。(通过电脑演示得到。)

  (3)指导学生看圆锥立体图。

  2.圆锥体积公式推导。

  (1)电脑出示木制圆柱体铅笔,用卷笔刀将前段削成圆锥后提问:削后的这一段是什么物体?这个圆锥是由什么物体削成的?这个圆锥体和原来这段圆柱体底面积和高有什么联系?两个体积有什么关系呢?(让学生发表意见)

  (2)出示等底等高的圆柱体玻璃容器和圆锥体玻璃容器。

  ①教师演示圆柱和圆锥等底等高,并板书:等底等高。

  教师演示,学生观察:将圆锥体容器里面装满黄沙后,往圆柱容器里面倒,

  连续倒三次,圆柱体容器刚好倒满。

  ②指导学生四人小组做倒沙子实验。

  四人小组组长演示,其余同学观察,发现圆柱体积和圆锥体积之间有什

  么关系。

  (3)提问:把圆锥里装满的黄沙倒入圆柱里后,沙占圆柱容积的多少?这样倒了几次后,才装满圆柱容器?这实验说明等底等高的圆锥和圆柱体积有什么关系?

  (教师板书;圆锥的体积等于和它等底等高的圆柱体积的三分之一。)

  教师出示不等底不等高的圆柱和圆锥容器,让学生观察教师的演示,提问:圆锥体积是这个圆柱体积的三分之一吗?为什么?学生讨论。

  (4)提问:我们已经知道圆柱体积公式:V=Sh,那么与它等底等高的圆锥体积公式应是什么?

  (教师板书:V=1/3 Sh。)

  提问:这个公式里,Sh是求什么?为什么要乘以1/3?要求圆锥的体积应该知道什么条件?

  3、公式应用。

  (1)出示例1 一个圆锥体零件,底面积是19平方厘米,高是12厘米。这个圆锥体的体积是多少?

  学生口答,教师板书。

  V=1/3Sh 板书后提问:1912是求什么?

  =1/31912 如果不乘以1/3是求什么?

  =76(立方厘米)

  答 :(略)

  (2)如果题目不告诉底面积,而是告诉底面半径是3厘米,怎样求圆锥体积。

  学生练习,教师讲评(略)。

  目的是培养学生的发散性思维和创新意识。

  巩固练习。

  1、求下列各圆锥的体积。

  (1)底面积30平方厘米,高5厘米。

  (2)底面半径4分米,高是3分米。

  (3)底面直径12厘米,高是10厘米。

  (4)底面周长31.4厘米,高6厘米。

  2、

  4

  求下面各物体的体积。(单位:厘米)

  12

  9

  5

  目的是让学生运用所学的知识解决实际问题。

  3.讨论题:把一个体积是60立方厘米的圆柱体木块,削成一个最大的圆锥体,圆锥体的体积是多少?削去的体积是多少?

  通过讨论,让学生把所学的知识,形成技能技巧,培养学生的创新能力。

  归纳小结。

  通过这节课的学习,学生认识了圆锥体,掌握了圆锥体的体积计算方法,能解答有关实际问题,进一步发展了学生的空间概念和抽象思维能力。

  四. 说板书设计。

  圆锥的认识和体积计算

  圆锥的组成: 计算方法:

  面:(两个面) 棱:(一条棱) 圆柱体积公式:v=sh

  顶点:(一个顶点) 高:(一条) 圆锥体积公式:v=1/3sh

  例1 一个圆锥体零件,底面积是19平方厘米,高是12厘米,

  求这圆椎的体积是多少?

  学生口答,教师板书:(略)

  这板书简明扼要符合大纲要求,体现了这节课的主要内容,突出了本节课重点和难点,便于学生学习和掌握,展现出承上启下、循序渐近的过程,围绕着圆锥体的认识和体积计算,概括出了明确的中心。

  五. 几点说明。

  根据直观性原则,引导学生观察、操作、实验、归纳、小结,认识圆锥体和体积计算公式。根据理论与实践相结合的原理,运用所学的圆锥体的体积计算公式解决实际问题。根据学生的认知过程循序渐近地布置一些练习,培养学生的空间思维,发散性思维和创新思维能力。

我得到了表扬作文350字2

  一,说教材

  本节课是西师版义务教育教育课程标准实验教科书六年级数学下册第38页—41页的内容,圆锥是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形以及长方体、正方体、圆柱体这三种立体图形的基础上进行研究的。以进一步发展学生的空间观念,为学生学习其它图形知识打下坚实的基础。为了做到有的放矢,我特制定以下

  学习目标:

  知识与技能目标:

  掌握圆锥的体积公式,能运用公式进行计算。

  过程与方法目标:

  在观察、讨论等活动中探索圆锥的体积公式。

  情感态度价值观目标:

  体验数学与生活的密切联系,自觉养成合作交流与独立思考的良好习惯。

  教学重点:

  圆锥体积公式的运用。

  教学难点:

  掌握圆锥体积公式的推导过程。

  突破点:

  组织学生动手做实验,引导学生动脑、动手,推导出圆锥体积的计算公式。

  二.说教法、学法

  教法:根据学生的认知规律、实际水平,以及教学内容的特点,本节课我以自主探究、小组合作学习方式为主,采用情境教学法、启发教学法,实验活动法,归纳总结法。教学中,既要充分发挥学生的主体作用,又要调动学生积极主动地参与教学。

  学法:采用分组、自主、合作、探究式的学习模式,引导学生主动学习、合作学习、创新学习,学生通过具体实践、操作、讨论、验证、总结、归纳等学生活动,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。

  三,课前准备

  要求每个学生自制等底等高的圆柱形容器和圆锥形容器各一个。教师准备:等底等高的圆柱体、圆锥体教具,实验用的细沙。

  四,教学过程:

  1、情境导入,引出课题:(3分钟)

  首先我会让每个小组,抽出一个代表给大家说一说在我们生活中哪些地方可以看见圆锥体,这样做不仅给本课的讲解创设了情境,更让学生体验到了从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。然后,我会追问学生:圆锥的体积到底怎样求呢?这就是我们这节课所要探讨的主要内容,板书课题《圆锥的体积》

  2、读讲结合,自主探究(15分钟)

  此时我会让学生拿出已经准备好了的等底等高的圆柱形和圆锥形容器,然后提问以下几个问题:1,这两个容器有什么共同的`特征2。谁的体积更大?3。圆锥的体积是圆柱的多少呢?它们之间有没有一定的数量关系?

  问学生:“你用什么办法验证自己的猜想呢?”这时候,肯定要有一部分聪明的或者已经预习课本的同学会说:“将圆锥形容器装满沙或水,在倒入圆柱形容器,看几次能倒满。”这时候就让同学们以小组为单位,验证他们的猜想。

  教师只需要做最好总结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。如果用V表示圆锥的体积,S表示底面积,h表示高,那么就能得出圆锥体积的计算公式为:V=1/3Sh

  3、运用新知,解决问题(10分钟)

  多媒体出示:一个铅锤高6cm,底面半径4cm。这个铅锤的体积是多少立方厘米?

  =100.48(立方厘米)

  答:这个铅锤的体积是100.48立方厘米。

  你能计算出铅锤的体积吗?同时提问一个程度比较好的同学进行演板,演板完毕后,教师不失时机的对其做出评价,同时强调做题格式。然后,进行一题多变:1。改变题中的半径和高的数值2,把半径该为直径3,把半径改为高,从而起到进一步巩固公式的作用

  多媒体出示:煤厂有一堆近似于圆锥的煤,煤堆底面周长18.84米,高1.8米。准备用载重5吨的车来运。一次运走这堆煤,需要多少辆车?(1m3煤重1.4吨)

  煤堆的底面积:

  煤堆的体积:

  1.4 16.956÷5≈5(辆)

  答:需要5辆车。

  学生自主解决,同组交流解题的心得。

  4、圆锥在生活中的应用(多媒体展示)(2分钟)

  5、运用公式,体会新知(多媒体展示)(5分钟)

  6、质疑问难,总结升华(3分钟)

  在此环节中,我会问学生“通过这节课的学习,你们有哪些收获,是怎样推导出圆锥的体积的公式的。

  7、布置作业(多媒体展示)(2分钟)

我得到了表扬作文350字3

  尊敬的各位评委老师,大家好!今天我说课的题目是《圆锥的体积》。

  下面我将从说教材,学情、教学目标、教法学法、教学过程、板书设计六个方面进行说课。

  《圆锥的体积》是在学生已经掌握了圆柱体积的计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。

  掌握学生的基本情况对于把握和处理教材具有重要作用,接下来我对学情进行分析。六年级学生已有了一定的生活经验,对空间观念也有了一定的了解。从一年级开始就认识了立体图形,五年级学习了长方体、正方体的体积,在前面刚学了圆柱的体积,在此基础上学习圆锥的体积,学生很容易掌握,做到水到渠成。

  根据教材的编排特点,学生的认知水平,及已有的生活经验,我制定了以下三个教学目标:

  1.使学生理解和掌握圆锥体积的计算方法,并能运用公式解决简单的实际问题。

  2.使学生在圆锥体积计算公式的推导过程中进一步理解圆锥与圆柱的联系,培养学生的推理思想。

  3.使学生经历猜测、验证的数学发现过程,培养学生乐于学习、勇于探究的数学情感。

  通过对教材和教学目标的分析,我认为本课的教学重点是利用圆锥体积公式解决实际问题,难点是掌握圆锥体积公式的推导过程。

  本节课我将遵循“教为主导,学为主体,实践操作为主线”的教学原则,采用引导启发,合作交流和自主学习等教学方法。让学生在动手操作、讨论交流中理解知识,在多样化的练习中巩固知识。

  为了有效的达成教学目标,我将从创设情境、引入新课,自主探究、掌握新知,巩固练习、拓展延伸,回顾梳理、课堂小结四个环节展开教学:

  第一环节:创设情境,引入新课

  课前我将创设冰淇淋大卖场的情景,出示圆锥形的两个冰淇淋图片:图片1的冰淇淋底面积较小,高一些,图片2的冰淇淋底面积较大,矮一些。让学生判断哪个冰淇淋大?选择对的同学可以免费品尝一根冰淇淋。让学生猜一猜,激发学生的兴趣,引出“底面积”和“高”两个关键量。接着引导学生思考:要想知道哪个冰淇淋大其实就是求它们的体积,自然引出本节课的主题,揭示并板书课题:《圆锥的体积》。以生活中学生感兴趣的事物设置情景,激发学生好奇心和求知欲,快速切入正题。

  第二环节:自主探究,掌握新知

  1、大胆猜测,引导分析

  首先让学生回顾已经学过的长方体、正方体、圆柱的体积,提出质疑圆锥的体积最有可能与我们学过的哪个立体图形的体积有关?为什么?

  接着引导学生从圆锥和圆柱的共同特征入手,它们的`底都是圆,从而引出圆锥的体积可能和圆柱的体积有关。学生通过知识的迁移产生猜想,引出圆柱,为实验探究做好铺垫,并且进一步激发了他们对新知的浓烈探索欲望。

  2、实验探究,合作学习

  首先,我会出示实验要求,明确各组任务。实验活动分为两组,一号学具用来证明等底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍,圆锥的体积是圆柱体积的三分之一。二号学具用来对比证明等底不等高、等高不等底、不等底不等高的圆柱和圆锥不存在上面的关系。学生操作实验时,我会巡视指导。

  3、全班交流,汇报结果

  实验完毕后,各小组汇报展示实验结果发现:一号学具的实验结果是一致的,在空圆锥里装满沙子倒入圆柱里都是三次装满。而二号学具的实验结果是不一致的,在空圆锥里装满沙子倒入圆柱,出现了不同次数的装满情况,唯独没有出现三次的情况。

  接着,提出质疑:为什么各小组一号学具的实验结果都是三次装满,而二号学具的结果却有所不同?学生小组讨论后,全班交流发现:一号学具的圆柱和圆锥都是等底等高的,而二号学具中的圆锥和圆柱有等底不等高的,有等高不等底的,也有不等高不等底的。启发学生思考:是不是所有符合等底等高条件的圆柱和圆锥,都是三次装满?

  4、教师演示,加以验证

  我会用标准教具装水再试验一次,加以验证,由学生自行总结出实验结果:等底等高的圆锥和圆柱,圆柱的体积是圆锥的三倍,圆锥的体积是圆柱的三分之一.虽然学生通过实验得到了结论,但是我还是会和学生解释一下,用实验得到的结果有可能是不严密的,实验只是一种验证手段,只是现在限于知识水平,还不能严格证明圆锥的体积是等底等高的圆柱体积的三分之一,但数学家已经证明了这一结论,可以直接应用。最后引导学生用字母表示圆锥的体积公式V=?sh,培养学生的符号意识,体会数学的简洁美。通过实验探究的活动,让学生在合作交流中经历“做数学”的过程,让学生体验到学习成功的喜悦。

  第三环节:巩固练习,拓展延伸

  为了检测本节课目标的达成,我设计以下练习,1、基本练习,及时检查学生对所学知识的理解程度,巩固圆锥的体积公式。2、解决引课中两个冰淇淋体积的问题,首尾呼应。3、综合训练,给学生提供了思维发展的空间,培养学生灵活运用知识解决实际问题的能力。

  第四环节:回顾梳理,课堂小结

  在这一环节,我将引导学生围绕“通过本节课的学习,你有什么收获?”回顾梳理本节课学习的内容,交流自己的学习心得和学习方法,有利于培养学生的抽象概括能力和语言表达能力,养成良好的学习习惯。

  说板书设计

  以上呈现的就是我的板书设计,我的设计以提纲式的板书为主,这样可以很直观、很清晰、更明了的将整课内容展示出来,一目了然,便于学生对所学知识的理解和掌握。

  结束语:以上就是我说课的全部内容,感谢各位评委老师的耐心倾听!

我得到了表扬作文350字4

各位领导、各位同仁:

  大家好!

  今天我说课的内容是《六年级数学》(人教版)下册第二单元《圆柱和圆锥》中的第二课时《圆锥的体积》。本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。

  一、说教材

  1、教材分析

  “圆锥的体积”教学是在学生学习了立体图形——长方体、正方体、圆柱体的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。

  教材突出了探索体积计算公式的过程,引导学生在装沙或装米的实验基础上进行公式推导。通过观察,比较,分析,推理,概括和抽象,自主发现圆锥的体积计算公式,进一步积累数学活动经验.经历数学化的过程,获得解决问题的方法.

  2、学情分析

  学生以前学习了长方体、正方体,在此前又学了由曲面和圆围成的立体图形——圆柱,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。通过前一节《圆锥的认识》,学生对圆锥的特征也有了一些了解,对学生来说,求体积并非陌生的新知识,只是像圆锥这样学生认为不规则几何体的图形,求体积有困难。

  对于六年级的学生来说,绝大多数学生的动手实践能力比较强,有一定的空间观念基础,但公式的推导过程却比较抽象、枯燥,对于他们来说该部分内容是一个难点。同时对于圆锥体积计算的实际运用,从以往的经验判断,学生对3倍的关系难以理解,教师应帮助学生理解。

  3、教学目标

  知识与技能目标:通过学生参与实验,从而推导出圆锥体积的计算公式,并运用公式计算圆锥的'体积;解决一些有关圆锥体积的实际问题。

  过程与方法目标:通过实验推导圆锥体积公式的过程,增强学生的实践操作能力,并培养学生观察、比较、分析、总结归纳的学习方法。

  情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。

  4、教学重难点

  教学重点:理解和掌握公式,能正确运用公式解决实际问题

  教学难点:圆锥体积公式的推导过程

  5、教具、学具准备

  教具:一个圆柱、2个与圆柱等底、等高的圆锥、沙子;学生自制的圆柱及各类型的圆锥若干、三角尺、直尺

  二、说教法

  在公式推导阶段,为了打破枯燥无味的公式推导过程,在教授本节课时,结合小学生的认知规律,以引导法、实验法、观察法,探索法为主,以讨论法、练习法为辅,实现教学目标。在教学中,从:①、让学生测量自制圆柱、圆锥的高(在上一节让学生自己动手制作圆柱、圆锥);②、让学生用自制的等底等高、等高不等底、等底不等高圆柱与圆锥分别装沙实验入手。通过学生自己动手测量、实验操作后总结实验规律。《圆锥的体积》说课稿

  通过小组实验、讨论、交流,归纳、推导出圆锥体积的计算公式:v=《圆锥的体积》说课稿sh

  在公式运用方面:采取逐步深入的模式,让学生讨论在:①、已知圆锥的高与底面半径;②、已知圆锥的高与底面直径;③、已知圆锥的高与底面周长三种情况下,如何使用公式计算。然后通过让学生列举身边的实例,引入实际运用。

  这样,既充分发挥了学生的主体作用,又调动学生积极主动地参与教学的全过程。力求为学生创造一个自主探索与合作交流的环境,引导学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。

  三、说学法

  以往的教学是教师处于主导地位,学生基本上是处于被动的听讲,被灌输者的被动地位,这样教出来的学生没有灵活性,随机应变的能力差,发现问题,分析问题,解决问题的能力差,学生的情感也低落。

  新课改要求:教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。

  针对本节,在学法上主要采取:

  1、学生在学习圆锥体积公式的推导时,通过自己动手进行操作实验、观察比较、讨论小结,最终推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。

  2、充分发挥学生的主体作用:学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。

  3、教师提出与所学课程内容有关的恰当合理的问题,让学生在分析、讨论、探索的前提下争取自己解决,对于有一定困难的问题,老师再从中提醒、点拨。从而挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

  四、说教学程序

  本节课的教学,我安排了6个教学程序:

  1、学生自主探索,预习

  第一步:回忆《圆锥的认识》

  (1)让学生将他们准备的沙子或米拿到老师这里来,我们玩堆沙子游戏。我把它倒在桌子上,缓慢地倒,形成一个近似的圆锥,你们看这是什么形状?

  引导学生从沙堆的形状:底面是个圆,有一个顶点,侧面是一个斜面,抽象画出圆锥的图形(边提问、边引导、边画图板书)。

  顶点

  圆心

  高

  (2)让学生在图中找出圆锥的顶点、画出圆锥的高。向学生明确:从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示板书这条高)。

  (3)图里画的这条高和底面圆的所有直径有什么关系?

  (4)怎样测量圆锥高?(让学生根据上述方法使用三角尺、直尺测量自制圆锥的高。)

  第二步:回忆圆柱体积的计算公式

  画一个与上图圆锥等底、等高的圆柱,指名学生回答,并板书公式:

  圆柱的体积=底面积×高

  v圆柱=s·h

  第三步:课堂展示

  (1)我想知道堆起的沙堆的体积怎么办?

  (2)能不能也通过已学过的图形来求呢?转化成什么图形最合适?

  (3)你感觉它和前面学过的那个图形联系密切?

  (4)引导:可以通过实验的方法,得到计算圆锥(沙堆)体积的公式。

  2、实验操作

  这个环节分两个步骤进行。

我得到了表扬作文350字5

尊敬的各位领导、老师:

  大家上午好!今天,我说课的题目是《圆锥的体积》,下面我将从教材分析、学情分析、教学目标、教学重难点、教法学法、教学过程,板书设计这几个方面展开我的说课。

  一、说教材

  《圆锥的体积》这部分内容是小学阶段几何知识的重难点部分,在学生学习了立体图形——长方体、正方体、圆柱的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。

  教材突出了探索体积公式的'过程,引导学生在装沙和装米的实验基础上进行公式推导。

  二、说学情

  本节课是学生在学习了长方体、正方体、圆柱这三种立体图形以及认识了圆锥特征的基础上进行的,学生已经具有了一定的“转化思想”和“类推能力”。在展开研究中,学生分组操作,通过量一量、倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。

  三、说教学重难点

  根据对教材和学情的分析,我制定以下三维教学目标:

  知识与技能目标:掌握圆锥的体积公式,并能应用公式解决简单的实际问题。

  过程与方法目标:通过观察、操作、猜测、验证等数学活动,发展学生的推理能力。

  情感态度与价值观目标:在体积公式的推导过程中,渗透转化的数学思想。

  四、说教学重难点

  教学重点:理解并掌握圆锥体积的计算方法,并能解决简单的实际问题。

  教学难点:理解圆锥体积公式的推导过程。

  说教法学法

  为了突出重点突破难点,在教法上,我选择以动手操作法为主,以引导发现法、设疑激趣法、多媒体辅助法为辅,让学生全面、全程地参与教学的每一个环节。

  学法上:我充分发挥学生的主体作用,以小组合作学习为主要形式,让学生全面参与新知的发生、发展和形成的过程。

  说教学过程

  课堂教学是学生获取数学知识,发展能力的重要途径,结合“学.学.导.练”的教学模式,我设计了以下四个教学环节:

  第一环节:自主学习

  第二环节合作学习

  第三环节:教师讲导

  第四环节:精练强化

  五、说板书设计

  圆锥的体积=×圆柱的体积=×底面积×高

  S=sh

我得到了表扬作文350字6

  我说课的内容是冀教版教材数学六年级下册第三单元“圆柱和圆锥”的第七课时----《圆锥的体积》,下面说一说我对这节课的想法。

  一、说教材

  (一)圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。

  内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。

  (二)、教学目标

  1、知识目标:通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积

  2、能力目标:培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。

  3、情感目标:引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

  (三)教学重点、难点和关键

  重点:理解和掌握圆锥体积的计算公式。

  难点:理解圆柱和圆锥等底等高时体积间的倍数关系。

  关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。

  二、说学情

  六年级的学生已经积累了一定的学习经验和方法,如上学期学的圆的面积的推导过程和刚刚经历过的圆柱的体积的推导中所运用的转化的方法,这节课我想学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的问题情境之中。

  三、说教学过程

  口算(题卡)时间3-5分钟。

  (一)、回顾旧知,引入新课

  1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。(学习圆柱时用的)

  问题(1)已知底面积和高怎样求它的体积?(2)已知底面半径、直径或周长又怎样求它的体积?

  (这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。)

  2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积。

  (二)探究新知、推导公式

  1、认识圆锥各部分的名称和特征(顶点(一个)、底面(一个圆)、侧面(展开是扇形)高(一条))引导学生猜想侧面展开是什么图形,自己动手验证。试着测量圆锥的高。

  (2)教学圆锥体积公式

  引导学生回忆圆柱的体积计算公式是怎样推导的?想:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?

  首先,教师出示等地等高的.圆柱圆锥(课件出示)思考:(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?

  其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙子往等底等高的圆柱中倒和在圆柱中装满沙子往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥的3倍。

  第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= 1/3Sh。

  第四、让学生做在小圆锥里装满水往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。

  第五、个小组汇报、展示。

  第六、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  四、利用新知、解决问题

  1、填空:(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是()立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是()立方厘米。

  2、教学应用体积公式计算体积(电脑出示题目)

  一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?(学生独立做在练习本上,教师行间巡视、指导,做完后集体订正)。

  3、只列式不计算。将上题中的已知条件:“底面积是25平方分米”,依次改为“半径是3分米”、“直径是6分米”、“周长是12.56厘米”引导学生想:要求体积,先要求什么?

  4、小结:要求圆锥的体积,不论已知条件如何改变,都必须先求出底面积。求圆锥的体积,不但不能忘记乘以1/3,还要注意单位统一。

  五、达标测评

  1、让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。

  2、思考题:一个长15厘米,宽6厘米,高4厘米的长方体木料,用它制成一个最大的圆锥体,这个圆锥体的体积是多少?(此题给学有余力的学生练习

  六、全课总结,课外延伸。

  让学生说说这节课的收获,还有什么不懂得的问题?并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样结尾,激发了学生到生活中继续探究数学问题的兴趣。

  总之,本节课教学,学生变被动学习为主动获取,掌握了学习知识的方法,真正体现了陶行之先生所说的:“教正是为了不教”的教学思想.

我得到了表扬作文350字7

  一、说教材:

  1、说课内容:

  圆锥的体积。(小学六年级数学第十二册第二单元《圆柱和圆锥》中《圆锥》的第二课时)

  2、教材简析:

  圆锥是小学几何初步知识最后一个单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形。圆锥的体积也是在学习过长方体、正方体和圆柱体积的基础上的又一个延伸,也为以后学生系统学习立体几何打下基础。

  3、教学重点:能正确运用圆锥的体积计算公式求圆锥的体积。

  教学难点:理解圆锥体积公式的推导过程。

  4、教学目标:

  (1)知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;

  (2)能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的'推导实验,增强学生的实践操作能力和观察比较能力;

  (3)德育方面:引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

  二、说教法:

  教育家布鲁纳说过:“教学不是把学生当成图书馆,而是培养学生参与学习的过程”。学生是学习的主体,因此我在设计教法时,根据本节课的特点,结合小学生的认知规律,采用以下几种教法:

  以谈话法、实验法、观察法为主,以讨论法、练习法为辅,实现教学目标。在教学中,既充分发挥学生的主体作用,又调动学生积极主动地参与教学的全过程。本节课引导并演示了两个实验。

  第一、让学生比较圆柱和圆锥是否等底等高。

  第二、在“等底等高”的条件下通过装水实验比较圆锥与圆柱的体积。使学生理解“等底等高”的条件下,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥体积的3倍。

  通过小组讨论、全班交流,归纳、推导出圆锥体积的计算公式:v=1/3sh。

  教学准备:

  多媒体课件。

  三、说学法

  “人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。因此我在讲求教法的同时,更重视对学生学法的指导。

  1、学生学法:观察法、实验法、探索法。学生在学习圆锥体积公式的推导时,通过操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。

  2、在教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。

  四、说教学程序:

  本节课我设计了以下五个教学程序:

  1、复习旧知,做好铺垫。

  利用复习圆柱、圆锥的认识和圆柱的体积公式及其应用,为新知识的迁移做好铺垫。

  2、谈话激趣,导入新课。

  很多同学都喜欢吃冰淇淋,你们看,冰淇淋的形状是什么样的?你们想没想过一个圆锥筒能装多少冰淇淋呢?这就是这节课我们大家一起探究的内容。(板书课题)

  3、实验操作,探究新知。

  (1)通过引导,课件演示,学生观察,然后出示三个问题,让学生展开讨论:

  问题一:刚才演示的圆柱、圆锥,它们有什么关系?

  问题二:将空圆锥装满水往空圆柱里倒,倒了几次才能将空圆柱倒满?

  问题三:你有什么发现?

  (2)汇报交流:

  圆锥的体积是与它等底等高圆柱体积的1/3,圆柱的体积是与它等底等高圆锥体积的3倍。

  (3)师生共同归纳公式:圆锥的体积等于和它等底等高的圆柱体积的三分之一,即v=1/3sh(板书公式)

  (4)强调:等底等高两个条件缺一不可。

  4、尝试练习,巩固提高。

  (1)想一想,议一议,说一说。

  ①、已知圆锥的底面半径r和高h,如何求体积v?

  ②、已知圆锥的底面直径d和高h,如何求体积v?

  ③、已知圆锥的底面周长c和高h,如何求体积v?

  通过本题的尝试练习,让学生熟练掌握公式。

  (2)运用所学知识解决实际问题。(指名学生板演)

  (3)学习例3。让学生尝试自己讲,教师加以补充。

  (4)反馈练习。

  由圆锥体积的实际应用、填表格、判断、拓展题四部分组成,拓展题让学生采用多种解法,同时使学生懂得圆柱削成最大的圆锥,削去的体积是圆锥体积的2倍。

  5、看书质疑,布置作业。

  ①通过这节课的学习,你学到了什么知识?

  看书总结和质疑,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生自己去质疑,从而实现课内向课外的延伸。

  ②布置课堂作业:练习四的有关练习题。

我得到了表扬作文350字8

  一.说教材

  1、说课内容

  我今天教学的内容是圆锥的体积,圆锥是小学几何初步知识的最后一个教学单元中的内容,是在掌握了圆的周长、面积和圆柱的体积的基础上进行教学的。通过教学,使学生认识圆锥,掌握圆锥的特征以及各部分的名称。理解求圆锥体积公式的计算公式,会运用公式计算圆锥的体积。圆锥体是人们在生产、生活中经常遇到的形体。教学这部分的内容,有利于进一步发展学生的

  2、教学目标:

  (1)知识目标:通过观察和实验使学生理解和掌握圆锥特征和圆锥的体积公式,能运用公式正确地计算圆锥的体积。

  (2)技能目标:培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。

  (3)情感态度目标:渗透事物间相互联系的辨证唯物主义观点的启蒙教育。

  3、教学重难点

  (1)重点:理解和掌握圆锥的特征、体积的.计算公式。

  (2)难点:掌握圆锥高的测量方法和圆锥体积公式的推导过程。

  二.说教法。

  根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法、设疑诱导法为辅。教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考、操作,教师适时地演示,化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

  三.说学法

  根据学法指导自主性和差异性原则,让学生在“观察一操作一概括一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。

  四.说程序设计:

  课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的主要途径。为了达到预期的教学目标,我对整个教学过程进行了系统地规划,遵循目标性、整体性、启发性、主体性等一系列原则进行教学设计。设计了六个主要的教学程序是:

  (一)复习旧知,课前铺垫

  (二)提出质疑,引入新课 

  (三)动手操作,获得新知 。

  (四)综合练习,发展思维

  (五)课后小结,归纳知识

  (六)作业布置,巩固新知

  五、说教学过程:

  (一)复习旧知,课前铺垫

  1.怎样计算圆柱的体积?

  指名回答,教师板书:圆柱体的体积=底面积×高.

  2.一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?

  指两名板演,全班齐练,集体订正.

  (二.)提出质疑,引入新课  

  .圆锥有什么特征?它的体积如何计算呢?

  今天我们就利用这些知识探讨新的——怎样计算圆锥的体积(板书课题)

  (三)动手操作,获得新知  

  1.探讨圆锥的体积公式  

  教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:  

  学生回答,教师板书:  

  圆柱——(转化)——长方体  

  圆柱体积公式——(推导)——长方体体积公式  

  教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体.你们小组比比看,这两个形体有什么相同的地方?学生操作比较.

  (1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)  

  (学生得出:底面积相等,高也相等。)

  底面积相等,高也相等,用数学语言说就叫“等底等高”.

  (板书:等底等高)

  (2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?为什么?

  教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?(指名发言)

  用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系.

  (3)学生分组做实验.

  谁来汇报一下,你们组是怎样做实验的?  

  你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)

  同学们得出这个结论非常重要,其他组也是这样的吗?  

  我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

  (4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?  

  学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了砂子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)

  为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

  在等底等高的情况下.

  (老师在体积公式与“等底等高”四个字上连线.)

  现在我们得到的这个结论就更完整了。(指名反复叙述公式.)

  教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想办法推出计算公式?让学生动脑动手?

  得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3.

  小结:今后我们求圆锥体体积就用这种方法来计算。

我得到了表扬作文350字9

  教学内容:

  教材第20页例2、练一练。

  教学要求:

  使学生进-步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积公式解决-些简单的实际问题:

  教学重点:

  进一步掌握圆锥的体积计算方法。

  教学难点:

  根据不同的条件计算圆锥的体积。

  教学过程:

  一、铺垫孕伏:

  1.口算。

  2.复习体积计算。

  (1)提问:圆锥的体积怎样计算?

  (2)口答下列各圆锥的体积:

  ①底面积3平方分米,高2分米。

  ②底面积4平方厘米,高4.5厘米。

  3.引入新课。

  今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的`方法解决一些简单的实际问题。

  二、自主探究:

  l.教学例2。

  出示例题,让学生读题。提问:你们认为这道题要先求什么,再求这堆沙的重量?让学生说说为什么要先求体积,才能求这堆沙的重量?这里底面直径和高的数据怎样获得?指名板演,其他学生做在练习本上,集体订正。

  2.组织练习。

  (1)做练一练。

  指名一人板演,其余学生做在练习本上,集体订正。

  (2)讨论练习三第6题:圆柱和圆锥的体积和高分别相等,那么,圆柱的底面积和圆锥的底面积有什么关系?这道题,已知圆柱底面的周长,先求出什么?在怎样?理清思路后

  学生做在练习本上。集体订正。

  (3)讨论练习三第7题。

  底面周长相等,底面积就相等吗?

  三、课堂小结

  这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算.有时候还可以计算出圆锥形物体的重量。

  四、布置作业

  1.练习三第5题及数训。

  2.出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第167页图制作的圆锥,求出它的体积来。

  3.思考练习三第8、9题。

我得到了表扬作文350字10

  一、教材分析

  本节课是北师大版数学教材六年级下册第一单元第11~12页的内容——圆锥的体积。

  这部分内容是发展学生空间观念的内容,也是小学阶段几何初步知识的最后一个内容,是学生在了解和理解了体积和容积的含义基础上,进一步了解圆锥体积或容积;在研究了圆柱体积计算方法的基础上,教材继续渗透类比的思想,再次引导学生经历“类比猜想——验证说明”的过程,进行圆锥体积计算方法的探索。内容包括了解圆锥体积或容积,理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。

  二、学生情况

  学生已经直观认识了长方体、正方体,掌握了长方体、正方体体积的计算方法,在前面的课时中也已经经历了“类比猜想——验证说明”的探索过程,通过已有的长方体、正方体体积计算方法,学习了圆柱的体积计算方法,在此基础上,让学生再次经历类比探索去学习圆锥体积计算方法。但长方体、正方体和圆柱都是直柱体,类比和猜想圆柱体积计算方法对学生来说比较容易,但是圆锥不是直柱体,因此在探索活动中,需要引导学生提出合理的猜想。学生对这部分内容的掌握,不仅有利于掌握立体图形之间的本质联系,提高几何体知识掌握水平,同时也利于提高运用所学数学知识和方法解决一些简单实际问题的能力。

  三、教学目标

  根据新课标的具体要求,和本节课的教学内容,结合学生实际制定了以下教学目标。

  知识目标:

  1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。

  2、经历圆锥体积计算公式的推导过程,理解并掌握圆锥体积的计算公式,能正确计算圆锥体积。

  3、能运用圆锥体积的计算方法,解决有关实际问题。

  能力目标:

  培养学生的观察、操作能力,进一步丰富对空间的认识,建立空间观念,发展学生的形象思维,增强学生的应用意识。

  情感目标:

  能积极参加实验活动,培养学生探索的精神和小组合作的意识。

  四、教学重、难点

  重点:圆锥体积的计算。

  难点:理解圆锥体积与圆柱体积的关系。

  关键:经历“小实验”活动,在活动中发现规律。

  五、教法、学法

  本节课,在教法和学法上力求体现以下两方面:

  1、以讲解法、教具操作法、实验法为主,实现教学目标,在教学中,即充分发挥学生的主体作用,调动学生积极主动地参与教学全过程。

  2、教学充分发挥学生的主体作用。通过自己操作实验、观察比较、讨论小结,发现圆柱与圆锥的体积关系,从而推导出圆锥的.体积计算公式。

  六、教具准备

  等底等高的圆柱体和圆锥体容器,不等底等高的圆柱和圆锥。

  七、教学环节

  环节一复习铺垫

  回忆并应用圆柱体积计算公式。通过练习巩固对圆柱体积计算公式的认识,为下面学习圆锥体积计算公式作好铺垫。

  环节二探索新知

  首先出示教材中的情境图,并提出问题:求这堆小麦的体积,实际上就是求什么?引导学生结合情境来进一步体会圆锥体积的含义。接着直接揭示课题——研究圆锥体积计算方法。

  探索圆锥体积计算方法。分为以下几个步骤完成。

  步骤一:引导学生回忆圆柱体积计算方法的推导,这样,学生可以利用类比迁移规律,从求圆柱体积的思路、方法中得到启示。然后让学生思考:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?学生很容易根据圆柱和圆锥的底面都是园,来联想到转化成圆柱。

  步骤二:放手让学生大胆的猜想如何计算圆锥的体积。学生很容易想到如果是用底面积乘高,计算出来的是圆柱的体积,而直觉会让他们想到圆锥的体积应该比圆柱体积小,但这个时候他们并没有意识到“等底等高”。让学生继续猜想应该是圆柱的几分之几,并说明猜想的依据。在猜想过程中,学生可能得出的结论多样,这个时候针对不同的结论,如:圆锥体积是圆柱体积的二分之一;圆锥体积是圆柱体积的三分之一等。教师随即出示几个大小不同,且不等底等高的圆柱和圆锥让学生仔细观察,比如:大圆锥和小圆柱,或者底面积(高)相同,但是高(底面积)不相同的圆柱和圆锥。通过观察让学生发现高和底面积如果不相同,不能找到与圆锥的关系,因此只有圆柱和圆锥等底等高才便于我们研究。

  步骤三:实验活动。在学生形成猜想后,再引导学生“验证说明”自己的猜想。展开分组活动,让学生参与操作实验,用一个空心的圆锥装满水或沙子倒入等底等高的圆柱容器中,看几次能倒满;然后再把圆柱中装满水或沙子倒入等底等高的圆锥容器中,需要倒几次才能倒完,并做好观察记录。让学生初步感知等底等高的圆柱和圆锥体积之间的关系。接着教师用一对等底等高的圆柱和圆锥。

我得到了表扬作文350字11

  一、说教材:

  1、本课教学内容是义务教育课程标准实验教材小学数学六年级下册的第一单元《圆柱与圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,例2、例3,相应的“做一做”及练习四的习题。

  2、本课是在学生已经掌握了圆柱体积计算和认识了圆锥的基本特征的基础上学习的,是小学阶段几何知识的最后一课。学好这一部分内容,有利于进一步发展学生的空间观念,进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

  3、教学重点:能正确运用圆锥体积计算公式求圆锥的体积。

  教学难点:理解圆锥体积公式的推导过程。

  4、教学目标:

  知识目标:理解并掌握圆锥体积公式的`推导过程,学会运用圆锥体积计算公式求圆锥的体积;

  能力目标:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;

  情感与价值观:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

  5、教具准备:等底等高的圆柱、圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个。

  学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,一定量的细沙。

  二、说教法:

  1、实验操作法。

  波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”因此,我在课上设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力。

  2、比较法、讨论法、发现法三法优化组合。

  几何知识具有逻辑性、严密性、系统性的特点。因此在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一”。然后再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。

  三、说学法

  我在研究教法的同时,更重视对学生学法的指导。

  1、实验操作法。

  2、尝试练习法。

  四、说教学程序:

  本节课我设计了以下五个教学程序:

  1、复习旧知,做好铺垫。

  复习圆锥的认识和圆柱的体积公式及其应用,为新知迁移做好铺垫。

  2、谈话激趣,导入新课。

  (1)我们掌握了圆柱体积公式及其应用,并认识了圆锥,这节课,我们一起来学习圆锥的体积。(板书课题)

  (2)圆锥体积和圆柱体积有什么关系吗?

  3、实验操作,探究新知。

  本环节教学是本节几何课成败的关键。为了使学生成为学习的主人,在这个环节中,我尽量给学生有对象可说,有东西可做,有问题可想,有步骤可循,让学生都能主动地操作、观察、比较、分析和归纳。

  (1)在实验时,我提出了四个问题,让学生带着问题进行操作:

  a比一比,量一量,圆柱和圆锥的底和高之间有什么关系?

  b用空圆锥装满沙,倒进空圆柱中,可以倒几次?每次结果怎样?

  c通过实验你发现了什么?

  d你能用实验说明“圆锥的体积不一定是圆柱体积的三分之一”吗?

  (2)学生汇报实验结果。说出圆锥体及计算公式。

  (3)教师归纳公式,学生记忆公式。(板书结论和公式)

  4、尝试练习,巩固提高。

  (1)同时出示例2和例3。

  ①课件示例题,指名读题,说出已知条件和所求问题;

  ②分析题意。

  ③指名板演。

  ③集体订正,指出计算圆锥体积时,一定不要忘了乘“1/3”。

  (2)巩固练习,形成技能,完成“做一做”。

  这个环节充分放手让学生自己尝试练习,可以挖掘学生的潜能,让学生体验成功的乐趣。

  5、看书质疑,布置作业。

  通过这节课的学习,你学到了什么知识?还有什么疑问的吗?看书总结和质疑,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生去质疑答难,从而实现课内向课外的延伸。在完成了书上的基础练习之后,设计了三个发展练习,分别是知道半径和高;直径和高;周长和高;求体积,这样即满足了基础知识的学习,又使优生能有所提高。

  以上是我对《圆锥的体积》一课的说课,如有不妥望各位老师给予帮助指导。

我得到了表扬作文350字12

  一、说教材

  圆锥是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形和长方体、正方体、圆柱体的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积的。内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱和圆锥之间的本质联系、提高几何知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识技能解决实际问题的能力。

  教学目标是:

  1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。

  2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。

  教学重点是:掌握圆锥体积的计算方法。

  教学难点是:理解圆锥体积公式的推导过程。

  二、说教法

  根据学生认知活动的规律,学生实际水平状况,以及教学内容的特点,我在本节课以自主探究、小组合作学习方式为主,采用情境教学法,先通过情境感知并进行猜想,再通过操作验证,从中提取数学问题,自己总结归纳出圆锥体积的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的,同时在课堂上多鼓励学生,尤其注重培养学生敢于质疑的精神。

  三、说学法

  本节课学习适于学生展开观察、猜想、操作、比较、交流、讨论、归纳等教学活动,为了更好的指导学法,我采用小组合作形式组织教学。这样,一方面可以让学生去发现,体验创造获取新知,另一方面,也可以增强学生的合作意识,在活动中迸发创造性的思维火花。

  四、说教学流程

  为了更好的突出重点,突破难点,我以动手操作、观察猜想、实验求证、讨论归纳法实现教学目标;教学中充分利用几何的直观,发挥学生的主体作用,调动学生积极主动地参与教学的全过程。

  1、创设情境,提出问题

  出示近似圆锥形的沙堆,接着让学生根据情境提出他们想知道的知识,很多学生都想知道沙堆的体积有多大,从而导出课题“圆锥的体积”。让学生自己提出问题,发现问题,激发了学生探索解决问题的强烈愿望。

  2、探索实验,得出结论

  A、动手操作

  把一个圆柱形木料的上底削成一点,让学生观察削成的圆锥体与原来的圆柱体有什么关系.要求先标出上底的圆心点,不改娈下底面,注意安全。培养学生初步的空间观念和动手操作能力。

  B、观察猜想

  观察、比较圆柱体与圆锥体。

  突破知识点(1)“等底等高”;让学生猜测圆柱体积与它等底等高的圆锥体积的关系。

  突破知识点(2)圆锥体积比与它等底等高的圆柱体积小、圆锥体积是与它等底等高的圆柱体积的1/2、圆锥体积是与它等底等高的圆柱体积的1/3;设想求圆锥体积的方法,学生独立思考后交流讨论,给学生提供了联想和交流的空间,培养了他们的创新能力。

  C、实验求证

  学生动手实验,小组合作探究圆锥体积的计算方法。

  (1)用天平称圆锥体和与它等底等高的圆柱体木料的质量;

  (2)把圆锥体浸装有水的圆柱形水槽里量、算出体积;

  (3)用装沙或装水的方法进行实验。这样的设计,由教师操作演示变学生动手实验,充分发挥了学生的主体作用。

  通过学生演示、交流、讨论,得出圆锥体积的计算公式:

  圆柱的体积等于与它等底等高的圆锥体积的3倍;

  圆锥体积等于与它等底等高的圆柱的体积的`1/3.

  圆锥体积=底面积×高×1/3

  这个环节充分发挥了学生的主体作用,让学生在设想、探索、实验中发展动手操作能力及创新能力。

  3、应用结论,解决问题

  (1)以练习的形式出示例1。

  例1:一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

  通过这道练习,巩固了所学知识。

  (2)基础练习:求下面各圆锥的体积。

  底面面积是7.8平方米,高是1.8米。

  底面半径是4厘米,高是21厘米。

  底面直径是6分米,高是6分米。

  这道题是培养学生联

  系旧知灵活计算的能力,形成系统的知识结构。

  (3)出示例2。

  在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是6米,高是1.2米,每立方米小麦约重735千克,这堆小麦大约有多少千克?

  通过这道练习,培养学生解决实际问题的能力,了解数学与生活的紧密联系。

  (4)操作练习。

  让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。

  4、全课总结,课外延伸。

  让学生说说这节课的收获,并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样激发了学生到生活中继续探究数学问题的兴趣。

我得到了表扬作文350字13

  【教材分析】

  本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.

  【设计理念】

  数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的`能力。

  【教学目标】

  1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

  2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

  3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

  【教学重点】圆锥体积公式的理解,并能运用公式求圆锥的体积。

  【教学难点】圆锥体积公式的推导

  【学情分析】

  学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对 于新的知识教学,他们一定能表现出极大的热情。

  【教学流程】

  一、复习导入。

  1、说出圆柱和圆锥各部分的名称及特征:

  2、设疑:圆柱的体积公式用字母表示是(V=s h )。

  圆锥的体积公式用字母表示是( ? )。

  3、回顾圆柱体积计算公式的推导过程。能不能用转化的方法推导出圆锥的体积计算公式呢?

  二、创设问题,实验探究。

  准备两个容器,一个圆柱和一个圆锥,看看圆柱与圆锥的底和高各有什么关系?

  用适量的水探究等底等高圆柱与圆锥的体积之间有什么关系?

  分析归纳总结试验结论。

  用字母表示出它们的关系。

  三、实践运用,提升技能。

  教学例题3.

  四、练习巩固,提高能力。

  1、口答题。

  2、判断题。

  3、拓展运用。

我得到了表扬作文350字14

  微课作品介绍

  本作品是针对苏教版数学教材六年级下册第二单元《圆柱和圆锥》中的“圆锥的体积”这一知识点而设计的微课。适用于义务教育六年级即将学习“圆锥的体积”或者已经学过但仍需巩固的学生。

  本节内容是在学生了解圆锥的特征、掌握了圆柱体积的计算方法基础上进行教学的,有些学生可能通过预习等途径已经知道了圆锥的体积公式,但公式是熟知的,原理是抽象的。圆锥的体积公式是如何推导而来的?怎样透过公式了解原理?对学生来说有一定的难度,所以针对这个学习内容制作了本节微课。

  通过本节微课的学习,学生能突破“圆锥的体积是怎么推导得出的”这一难点,能用科学的方法来解释体积公式的由来,进而更好地理解、掌握、运用圆锥体积公式,为今后学习立体几何相关知识打下坚实的基础。

  教学需求分析

  适用对象分析

  本节微课适用于即将学习“圆锥的体积”或者已经学过但仍需巩固的学生。本节内容是在学生了解圆锥的特征、掌握了圆柱体积的计算方法基础上进行教学的。

  高年级学生分析问题,解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已经掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还没得到完全发展,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察法,猜想、操作等方法,让学生切身体验知识的生成和形成。

  学习内容分析

  本节课是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。在教学中重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解并掌握圆锥体积的推导过程和计算公式。

  教学目标分析

  1.使学生在认识等底等高的圆柱和圆锥的基础上,经历操作、猜想、估计、验证、讨论、归纳等数学活动过程,推导圆锥的体积公式;掌握圆锥体积的`计算公式,能应用公式解决相关的实际问题。

  2.使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

  教学过程设计

  (一)定向明法。

  1,谈话:生活中有许多圆锥形的物体。

  生:今年我家粮食大丰收,爸爸他们把稻谷堆成一堆一堆的,就是一个个大圆锥。可是,这些圆锥的体积怎么 求啊?

  师:思考一下你能帮助马小兰同学解决这个问题吗!?

  2,揭示课题。

  (二)实验验证

  师:回忆一下:之前我们怎么探索圆柱体积公式的(把圆柱转化成长方体)

  师:思考一下,我们可以怎么探求圆锥的体积?

  师:哦,是的或许,我们可以把圆锥的体积转化成圆柱的体积!

  1,估计圆锥和圆柱的体积关系。

  出示圆柱和圆锥的直观图

  师:请大家估计一下,圆柱的体积和圆锥的体积有怎样的关系呢?

  问:这仅仅是我们的估计,可以用什么方法来验证我们的估计呢?

  师:为了验证我们的猜想,我们一起来做个实验吧!

  2, 明确实验方法。

  (1)实验思路:在圆锥容器里装满沙子,然后倒入空圆柱容器,看几次正好倒满,就能得出这个圆锥体积与圆柱体积之间的关系。

  (2)实验注意点:①装沙子要装满,又不能多装;

  ②倒的时候要小心,不能泼洒;

  3,汇报总结。

  (1)比较原来的圆柱和圆锥形容器,有什么特点

  (2)结论:等底等高时,①圆柱的体积是圆锥体积的3倍;

  ②圆锥的体积是圆柱体积的三分之一。

  (3)总结得出圆锥体积计算公式:圆锥的体积=× 底面积×高

  (三)全课总结。

  师:同学们,经过今天的学习,你知道圆锥体积公式是怎么推导出来的吗?以后遇到圆锥形物体,它的体积你会求了吗?

  (四)课后巩固。

  一堆大米,近似于圆锥形,量得底面面积是18平方分米,高5分米。它的体积是多少立方厘米?

  学习指导

  请在预习或复习苏教版数学教材六年级下册第二单元《圆柱和圆锥》中的“圆锥的体积”时使用本视频,并尝试在观看后使用所学知识解决实际问题。另外,相关资料还有很多,可以去网上搜索更多进行巩固。

  配套学习资料

  苏教版数学教材六年级下册

  制作技术介绍

  制作PPT课件,再利用录屏软件录制过程,用摄像机拍摄实验过程,最后用非编软件进行整合。

我得到了表扬作文350字15

  一、说教材

  本节课是北师大版义务教育标准实验教科书六年级数学下册第11页—13页的内容,这节课是在学生对长方体,正方体,圆柱体,和圆锥体的特征都有了初步的认识和了解,并在学习了圆柱的体积的基础上进行学习的,这就为本节课的学习奠定了扎实的基础,同时,也为初中阶段进一步学习几何图形知识做了一个良好的铺垫。为了做到有的放矢,我特制定以下学习目标:

  1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。

  2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。学习重点是:掌握圆锥体积的计算公式。学习难点是:正确探索出圆锥体积和圆柱体积之间的关系。

  二、说教法

  本节课我采用的教法是启发式教学法,实验活动法,归纳总结法。教学中,既要充分发挥学生的主体作用,又要调动学生积极主动地参与教学。

  三、说学法

  动手操作法,观察发现法,自主探究法,合作交流法

  四、说教学过程

  1、复习导入,引出课题:通过复习圆锥的.特征、圆柱的体积计算方法引入新课,为学生学习新知做好铺垫。

  2、揭示课题,展示目标。

  3、以旧引新,探究新知。

  通过回忆圆柱体积计算公式的推导过程,提出问题:圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?激起学生探究的欲望。此时我会拿出已经准备好了的等底等高的圆柱形和圆锥形容器,然后提问以下几个问题:这两个容器有什么共同的特征?谁的体积更大?圆柱的体积和圆锥体积之间有没有一定的数量关系?问学生:“你用什么办法验证自己的猜想呢?”这时候,肯定要有一部分聪明的或者已经预习课本的同学会说:“将圆锥形容器装满沙或水,在倒入圆柱形容器,看几次能倒满。”这时候就让同学们以小组为单位,验证他们的猜想。

  教师只需要做最总结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。如果用V表示圆锥的体积,S表示底面积,h表示高,那么就能得出圆锥体积的计算公式为:V=1/3Sh(板书,特别的用红颜色粉笔写出等底等高和公式)

  4、运用公式,解决问题

  通过“算一算”和“试一试”让学生掌握公式的运用。

  5、巩固练习,拓展深化,依次练习“练一练”中第1题,第4题和第5题。当然在练习的过程中,要随时关注学生所出现的问题,以便得到及时的解决。

  6、质疑问难,总结升华

  在此环节中,我会问学生“通过这节课的学习,你们有哪些收获,是怎样推导出圆锥的体积的公式的。

【我得到了表扬作文350字】相关文章:

我得到了表扬作文400字06-13

我得到了表扬作文350字07-02

我得到了表扬作文350字(荐)07-05

[精品]我得到了表扬作文350字07-06

我得到了表扬作文400字精选[15篇]06-14

我得到了表扬作文250字(精选22篇)10-25

我得到了表扬作文350字通用(15篇)07-05

我得到了表扬作文350字必备15篇07-05

(推荐)我得到了表扬作文400字15篇06-13

我得到了表扬作文400字(汇编15篇)06-14