- 相关推荐
我的自画像四年级作文400字精华15篇
在日常的学习、工作、生活中,大家总免不了要接触或使用作文吧,借助作文人们可以反映客观事物、表达思想感情、传递知识信息。那么你有了解过作文吗?下面是小编收集整理的我的自画像四年级作文400字,欢迎大家分享。
我的自画像四年级作文400字1
1.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
2.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
3.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
4. 一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
5.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
6.分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
7.分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。
8.最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
9.特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
10.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
11.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
12.对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反, Y轴对称,x前面添负号;原点对称记,横纵坐标变符号。
13.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
14.函数图像的移动规律: 若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
15.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。
初三数学上册期末知识点归纳
单项式与多项式
仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数。
当一个单项式的系数是1或-1时,“1”通常省略不写。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。
1、多项式
有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等
对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)。
性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)。
性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等。
4、一元多项式的根
一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根。
多项式的加、减法,乘法
1、多项式的加、减法
2、多项式的乘法
单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法
多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
常用乘法公式
公式I平方差公式
(a+b)(a-b)=a^2-b^2
两个数的和与这两个数的差的积等于这两个数的平方差。
关于数学常见误区有哪些
1、被动学习
许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。
2、学不得法
老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3、不重视基础
一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。
4、进一步学习条件不具备
高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。
如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
如何整理数学学科课堂笔记
一、内容提纲。老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。
二、疑难问题。将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的.,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。
三、思路方法。对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。
四、归纳总结。注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。
五、错误反思。学习过程中不可避免地会犯这样或那样的错误,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。
数学常用解题技巧有哪些
第一,应坚持由易到难的做题顺序。近年来高考数学试题的设置是8道选择题、6道填空题、6到大题,通常称为866结构。在实体设置的结构中有三个小高峰,选择题是由易到难,最难的题是第8题。填空题同样是这样设置的。也是第9题容易到第14题最难,大题从第15题到第20题,它们的设置也是这样的。根据这样的试题结构,应先做前面容易的,基础好一点的考生就先做前7个选择,前5个填空、前5个大题,称为是755结构。基础差的就是644,先把自己能做的、会做的拿到手。这是第一点。
第二,审题是关键。把题给看清楚了再动笔答题,看清楚题以后问什么、已知什么、让你做什么,把这些问题搞清楚了,自己制订了一个完整的解题策略,在开始写的时候,这个时候是很快就可以完成的。
第三,属于非智力因素导致想不起来。本来是很简单的题比如说是做到第三题、第四题的时候不是难题,但想不起来了,卡住了,这时候怎么办?虽然是简单题却不会做怎么办?应先跳过去,不是这道题不会做吗?后面还有很多的简单题呢,把后面的题做一做,不要在考场上愣神,先跳过去做其他的题,等稳定下来以后再回过头来看会顿悟,豁然开朗。
第四,做选择题的时候应运用最好的解题方法。因为选择题和填空题都是看结果不看过程,因此在这个过程中都应不择手段,只要是能把正确的结论找到就行。考生常用的方法是直接法,从已知的开始也不看它的四个选项,从头到尾写完了之后一看答案就写上去了。另外就是特质法(音),一些出现字母、特别是不等式,这时候给它赋一个值,代进去这时候速度会比较快,正确地找出结果来。再就是数形结合法。最后实在不行了,就将四个选项代入验证,看看哪个符合就是哪个了。填空题用上述的直接法、特质法、数形结合法三种方法都适合。做大题的时候要特别注意解题步骤,规范答题可以减少失分。简单地说,规范答题就是从上一步的原因到下一步的结论,这是一个必然的过程,让谁写、谁看都是这样的。因为什么所以什么是一个必然的过程,这是规范答题。
我的自画像四年级作文400字2
1、乘法与因式分解
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)
2、三角不等式
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
3、一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
4、根与系数的关系
X1+X2=-b/a X1*X2=c/a注:韦达定理
5、判别式
①b2-4a=0注:方程有相等的两实根
②b2-4ac>0注:方程有一个实根
③b2-4ac<0注:方程有共轭复数根
6、三角函数公式
①两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
②倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
③半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
④和差化积
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
⑤某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
⑥正弦定理
a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
⑦余弦定理
b2=a2+c2-2accosB注:角B是边a和边c的夹角
⑧圆的方程
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
⑨立体体积与侧面积
直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h
正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2
圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l
弧长公式l=a*r a是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h
斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长
柱体体积公式V=s*h圆柱体V=pi*r2h
二、初中几何公式
1、平行线证明
①经过直线外一点,有且只有一条直线与这条直线平行
②如果两条直线都和第三条直线平行,这两条直线也互相平行
③同位角相等,两直线平行
④内错角相等,两直线平行
⑤同旁内角互补,两直线平行
⑥两直线平行,同位角相等
⑦两直线平行,内错角相等
⑧两直线平行,同旁内角互补
2、全等三角形证明
①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
④边边边公理(SSS)有三边对应相等的两个三角形全等
⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
3、三角形基本定理
①定理1在角的平分线上的点到这个角的两边的距离相等
②定理2到一个角的两边的距离相同的点,在这个角的平分线上
③角的平分线是到角的两边距离相等的所有点的集合
④等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
⑤推论1等腰三角形顶角的平分线平分底边并且垂直于底边
⑥等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
⑦推论3等边三角形的各角都相等,并且每一个角都等于60°
⑧等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
⑨直角三角形
4、多边形定理
①定理四边形的内角和等于360°
②四边形的外角和等于360°
③多边形内角和定理n边形的内角的和等于(n-2)×180°
④推论任意多边的外角和等于360°
5、平行四边形证明与等腰梯形证明
①平行四边形性质定理1平行四边形的对角相等
②平行四边形性质定理2平行四边形的对边相等
③平行四边形性质定理3平行四边形的对角线互相平分
……
④矩形性质定理1矩形的四个角都是直角
⑤矩形性质定理2矩形的对角线相等
……
⑥等腰梯形性质定理等腰梯形在同一底上的两个角相等
⑦等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
⑧推论1经过梯形一腰的中点与底平行的'直线,必平分另一腰
⑨推论2经过三角形一边的中点与另一边平行的直线,必平分第三边
7、相似三角形证明
①相似三角形判定定理1两角对应相等,两三角形相似(ASA)
②判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
③判定定理3三边对应成比例,两三角形相似(SSS)
④定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
⑤性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
⑥性质定理2相似三角形周长的比等于相似比
⑦性质定理3相似三角形面积的比等于相似比的平方
8、弦和圆的证明
①定理不在同一直线上的三点确定一个圆。
②垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
③推论1
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
弦的垂直平分线经过圆心,并且平分弦所对的两条弧
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
④推论2圆的两条平行弦所夹的弧相等
⑤圆是以圆心为对称中心的中心对称图形
⑥定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
⑦线与圆的位置关系
直线L和⊙O相交d 直线L和⊙O相切d=r 直线L和⊙O相离d>r ⑧圆与圆之间的位置关系 两圆外离d>R+r②两圆外切d=R+r 两圆相交R-r 两圆内切d=R-r(R>r) 两圆内含dr) QQ截图20150129173906.jpg 三、数学学习方法 1、突出一个“勤”字(克服一个“惰”字) 数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”,“勤能补拙是良训,一分辛劳一分才“:我们在学习的时候要突出一个勤字,克服一个“懒”字,怎么突出“勤”字,从这个字面上来看,要做到五勤:“耳勤”“眼勤”(耳朵听,眼睛看,接受信息) “口勤”(讨论,回答问题,而不是讲话,消化信息)“脑勤”(善于思考问题,积极思考问题——吸收、储存信息)那是不是做到以上四点就行了呢?不是。这个字还有缺陷,在聪下面加上“手” “手勤”(动手多实践,不仅光做题,做课件,做模型) 这样的人聪明不聪明? 最大的提高学习效率,首先要做到——上课认真听讲(这是根本)回家先复习再做题如果课听不好,就别想消化知识 2、学好初中数学还有两个要点,要狠抓两个要点: 学好数学,一要(动手),二要(动脑)。动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么。动手就是多实践,多做题,要“拳不离手”(武术)“曲不离口”(唱歌)。同学就是“题不离手”,这两个要点大家要记住。“动脑又动手,才能最大地发挥大脑的效率” 3、做到“三个一遍” 大家听过“失败是成功之母”听过“重复是学习之母”吗?培根(18-19世纪英国的哲学家)——“知识就是力量”,“重复是学习之母”。如何重复,我给你们解释一下: “上课要认真听一遍,动手推一遍,想一遍” “下课看” “考试前” 4、重视“四个依据” 读好一本教科书——它是教学、中考的主要依据; 记好一本笔记——它是教师多年经验的结晶; 做好做净一本习题集——它是使知识拓宽; 记好一本心得笔记,最好每人自己准备一本错题集 关键词:数学;总复习;初中;方法 中图分类号:G633。6文献标识码:B文章编号:1672—1578(20xx)12—0217—01 初中数学是义务教育阶段一门主要课程,它是进一步学习工作的基础。因此,进行初三数学总复习,使学生具有一定的数学素质,合格毕业,对于提高全民族素质,为培养改革人才奠定基础是十分必要的。本文将要探讨的就是搞好初三数学总复习的一些体会。 1、明确总复习的目的 中考是总结性的检验,考试成绩也必然会促使我们认真地总结检查自己的教学工作,改进教学方法,提高教学质量。因此,中考的需要是初三总复习的重要目的,但不是唯一的目的。在复习方面要从单纯面向升学的需要,转变为面向学生终身学习的需要。通过初三数学总复习,要使学生全面而系统地掌握初中数学的基础知识加深理解这些知识,进一步提高运用这些动知识的分析和解决问题的能力,从而大面积地扎扎实实的提高教学质量,为学生升入高一级学校打下必要的基础。 2、在《课标》和《考试说明》的指导下开展复习工作 "人人都能获得良好的数学教育,不同的人在数学上得到不同的发展"。这是新课程标准努力倡导的目标。也是我们总复习工作的出发点。20xx年版的《初中数学新课程标准》(以下简称《课程标准》)以及历年的《河北省文化课考试说明》(以下简称《考试说明》)中所确定的必学内容是要求所有学生都应当学习的,一定要教好学好,降低难度、减轻学生过重的学习负担,正是为了使学生掌握那些最基本、最重要的.内容,使绝大多数同学能学得好,增强信心,大面积提高教学质量。另一方面,对学有余力的同学也要创造条件,指导他们进一步学习,充分发挥他们的数学才能,做到既面向全体学生又因材施教。这一重要的教学指导思想,也是我们初三数学总复习必须遵循的方针。 3、从学生的实际出发,有序地进行初三数学总复习 教学是师生双方的共同活动,教师的教是为学生积极主动地学。初三总复习时间短,内容多,要想取得较好的复习效果,除教师钻研《课标》与《考试说明》,通晓教材,突出重点之外,还要调查研究、了解学生、明确难点,从学生实际出发,进行复习。否则,课的起点高了,学生接受有困难,起点低了,讲得太容易了,学生听起来乏味厌烦,使复习课不能有的放矢,对症下药、因材施教。因此,要了解学生的思想状况,复习的学习态度和方法;要了解学生对哪些知识是掌握提比较好的,哪些知识理解得不够深透,还有哪些知识是应当补缺的,哪些知识是普遍性的问题,哪些知识是个别性问题,充分估计学生的实际水平究竟如何。 4、突出数学思想方法,狠抓"四基"的落实 数学思想方法是数学知识的精髓,是沟通数学知识与运算能力的桥梁。教师应在平时教学中不断引导学生从数学知识中提炼数学思想,注重运用数学思想去分析问题与解决问题,并有意识、有目的地结合教材逐步渗透给学生:转化的思想、数形结合的思想、分类讨论的思想、方程的思想、函数的思想,要求学生理解待定系数法、消元法、降次法、配方法、换元法。对学习成绩好的学生,还应激发他们去总结带全局性的数学思想方法。 20xx年版初中数学课程标准明确提出"四基",即基础知识、基本技能、基本思想和基本活动经验。要使学生复习好基础知识和掌握基本技能,首先要使学生正确理解概念,对易混的概念抓住它们之间的区别与联系,同时要抓基本运算、抓基本数学方法和思维方法。基本概念、基本运算必须反复地练习,才能达到纯熟和巩固。凡属这方面的错误,必复习一段、练习一段、检查一段。务求落实"段段清",以掌握知识的本质为标准。当然还要注意因材施教,逐步深入。 1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等 5过一点有且只有一条直线和已知直线垂直 6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边 17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余 19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等 22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等 26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合 30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60° 34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形 37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半 39定理线段垂直平分线上的点和这条线段两个端点的距离相等 40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形 43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 48定理四边形的内角和等于360°49四边形的外角和等于360° 50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360° 52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等 55平行四边形性质定理3平行四边形的对角线互相平分 56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等 62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等 65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1关于中心对称的两个图形是全等的 72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等 76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形 78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79推论1经过梯形一腰的中点与底平行的`直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2S=L×h 83(1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0), 那么(a+c+…+m)/(b+d+…+n)=a/b 86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例 87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS) 95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方 99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。 110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形 114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理一条弧所对的圆周角等于它所对的圆心角的一半 117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心 126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角 129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等 131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r ②两圆外切d=R+r ③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r) 136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 (n2)180139正n边形的每个内角都等于 n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 pnrn141正n边形的面积Sn=p表示正n边形的周长 2142正三角形面积 32aa表示边长4143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°, k(n2)180360化为(n-2)(k-2)=4因此 n144弧长计算公式:L= nR180nR2LR145扇形面积公式:S扇形== 3602146内公切线长=d-(R-r)外公切线长=d-(R+r) 公式分类及公式表达式 乘法与因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a| 一元二次方程的解 bb24ac2a 根与系数的关系:X1+X2=-b/aX1*X2=c/a注:韦达定理判别式 b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac 一、在创新中培养学生的归纳意?R 在初中数学教学中,重点是对学生的创新精神和实践能力的培养,体现出现代素质教育。学生创新能力的培养在学习中占据非常重要的作用,在创新中学生可以巩固自身所学的知识,使数学知识在自己的头脑中根深蒂固,各类知识点在学生的头脑中形成清晰的框架,有助于学生归纳意识的培养。归纳意识的培养,可以减轻学生的学习负担,提升学生对知识的理解能力。 初中生在学习数学的环节中,常常会接触到大量的图像,在数学学习中,老师应该鼓励学生大胆创新,在创新环节中完成对知识点的归纳。数学学习并不死板,不仅仅学习教科书上的知识,还应该学习书本以外的知识,从而创新自己的思维。例如在进行函数的学习中,老师可以让学生绘制函数图像,对函数进行分类讨论,从而掌握递增函数和递减函数的定义,在分类讨论后,学生结合图像进行归纳。在数学教学中,老师不仅仅要重视书本上的逻辑内容,而且在把握逻辑内容的基础上,将图像和数学知识有机结合起来,使学生可以大胆创新。 很多学生在数学学习中存在困难,认为数学的学习就是解答大量的难题,他们在大量的题海战术后不善于归纳,导致数学学习的效率不高。 二、在交流中归纳知识点 在数学学习中,如果学生只是自己探究,那么在学习中不会得到灵感。数学学习不仅仅要求学生具有认真的钻研态度,而且也需要老师帮助学生养成归纳的意识。沟通和交流不仅仅在语言的学习中发挥非常重要的作用,而且在数学学习中同样非常重要。学生在解答数学问题中,常常会遇到一些问题,学生自己探究会陷入到死胡同中,需要老师和同学的帮助才能进一步完成。 为了切实在初中数学教学中培养学生的归纳意识,老师可以将班级内的学生分成几个不同的小组,组内的同学可以通过合作的方式,对知识点进行归纳,在数学的学习中更加变通,将数学这门学科应用到生活中。 例如,在进行二次函数的学习中,老师可以将学生分成不同的小组,留给学生充足的时间,让他们互相帮助,在沟通中对知识点进行归纳。学生很快就能得到结论,如果函数有两个解,那么函数与数轴会有两个交点,如果方程只有一个解,那么函数与数轴只有一个交点,如果方程没有解,那么函数与数轴没有交点。学生通过分组讨论的方式得到结论,通过归纳,学生对二次函数知识点的印象非常深刻。 三、学会正确归纳 在数学学习中,归纳思想非常重要,数学这门学科的知识非常细碎,是一门系统性很强的学科。数学知识错综复杂,很多学生在学习数学中力不从心,掌握合理的归纳方式,可以切实提升学生的.数学成绩。初中生的思维还不是特别完善,在进行数学学习环节中,对知识点进行合理的归纳,是每位老师应该采取的方法。如果学生不懂得归纳,那么在数学考试中,学生会将知识点混淆。为了提升学生的归纳能力,老师在课堂上应该将一些容易混淆和容易出现错误的习题让学生总结。 例如,在学习圆和直线这部分内容中,老师都会将重点内容,圆和圆的位置关系,直线和圆的位置关系进行重点分析。老师可以借助一些参考书目和资料,总结一些相似的题目,让学生在课堂上解答这些题目,使学生对这部分知识点进行总结,从而加深对这部分知识的理解。归纳思想在数学学习中应用非常多,在进行初中数学教学环节中,学生应该花更多的时间进行归纳。 在进行初中数学的学习中,学生归纳意识的养成可以完善学生的数学思维,学生学会归纳,在学习中就会如鱼得水,在考试中取得好成绩。 四、在反思中完成知识点的归纳 定义 对应角相等,对应边成比例的两个三角形叫做相似三角形 比值与比的概念 比值是一个具体的数字如:AB/EF=2 而比不是一个具体的数字如:AB/EF=2:1判定方法 证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的`对应顶点写在了对应的位置上。 方法一(预备定理) 平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明) 方法二 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。 方法三 如果两个三角形的两组对应边成比例,并且相应的夹角相等, 那么这两个三角形相似 方法四 如果两个三角形的三组对应边成比例,那么这两个三角形相似 方法五(定义) 对应角相等,对应边成比例的两个三角形叫做相似三角形 三个基本型 Z型A型反A型 方法六 两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。一定相似的三角形 1、两个全等的三角形 (全等三角形是特殊的相似三角形,相似比为1:1) 2、两个等腰三角形 (两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。) 3、两个等边三角形 (两个等边三角形,三角都是60度,且边边相等,所以相似) 4、直角三角形中由斜边的高形成的三个三角形(母子三角形) 图形的学习需要大家对于知识的详细了解和渗透,而不是一带而过。 1.圆是以圆心为对称中心的中心对称图形;同圆或等圆的半径相等。 2.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。 3.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。 4.圆是定点的距离等于定长的点的集合。 5.圆的内部可以看作是圆心的距离小于半径的点的集合;圆的外部可以看作是圆心的距离大于半径的点的集合。 6.不在同一直线上的三点确定一个圆。 7.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。 推论1: ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧; ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。 8.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。 9.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。 10.经过切点且垂直于切线的直线必经过圆心。 11.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。 12.切线的性质定理圆的切线垂直于经过切点的半径。 13.经过圆心且垂直于切线的直线必经过切点 14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的.夹角。 15.圆的外切四边形的两组对边的和相等外角等于内对角。 16.如果两个圆相切,那么切点一定在连心线上。 17. ①两圆外离d>R+r ②两圆外切d=R+r ③两圆相交d>R-r) ④两圆内切d=R-r(R>r) ⑤两圆内含d=r) 18.定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。 19.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。 20.弧长计算公式:L=n兀R/180;扇形面积公式:S扇形=n兀R^2/360=LR/2。 21.内公切线长= d-(R-r)外公切线长= d-(R+r)。 22.定理一条弧所对的圆周角等于它所对的圆心角的一半。 23.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 24.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 初中数学的学科地位很高,一直以来是三大学科之一,影响着物理化学的学习。 圆心角 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的'弦心距也相等。 推理过程 根据旋转的性质,将∠aob绕圆心o旋转到∠a'ob'的位置时,显然∠aob=∠a'ob',射线oa与oa'重合,ob与ob'重合,而同圆的半径相等,oa=oa',ob=ob',从而点a与a'重合,b与b'重合。 因此,弧ab与弧a'b'重合,ab与a'b'重合。即 弧ab=弧a'b',ab=a'b'。 则得到上面定理。 同样还可以得到: 在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。 在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。 所以,在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等。 圆的圆心角知识要领很容易掌握,经常会出现在关于圆的证明题中。 本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习。 一.知识框架 二.知识概念 1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的.位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。) 2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。 3.中心对称和中心对称图形是两个不同而又紧密联系的概念.区别是:中心对称是指两个全等图形之间的相互位置关系,这两个图形关于一点对称,这个点是对称中心,两个图形关于点的对称也叫做中心对称.成中心对称的两个图形中,其中一个上所有点关于对称中心的对称点都在另一个图形上,反之,另一个图形上所有点的对称点,又都在这个图形上;而中心对称图形是指一个图形本身成中心对称.中心对称图形上所有点关于对称中心的对称点都在这个图形本身上.如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形,如果把对称的部分看成是两个图形,那么它们又是关于中心对称. 4.中心对称图形与中心对称: 中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。 中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。 5.把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(centralsymmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。 6.中心对称的性质: 关于中心对称的两个图形是全等形。 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。 第一章有理数 一、正数和负数 ⒈正数和负数的概念 负数:比0小的数正数:比0大的数0既不是正数,也不是负数 注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断) ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2、具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8℃表示为:+8℃;零下8℃表示为:—8℃ 支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。 3.0表示的意义 ⑴0表示“没有”,如教室里有0个人,就是说教室里没有人; ⑵0是正数和负数的分界线,0既不是正数,也不是负数。 二、有理数 1、有理数的概念 ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数 ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。 理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。 注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8?也是偶数,—1,—3,—5?也是奇数。 2、(1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负p 分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;?不是有理数; 学霸分享的数学复习技巧 1、把答案盖住看例题 例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。 所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的.解法。 经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。 2、研究每题都考什么 数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。 3、错一次反思一次 每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。 学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。 4、分析试卷总结经验 每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。 数学解题方法分别有哪些 1、配方法 所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。 2、因式分解法 因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。 3、换元法 替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。 4、判别式法与韦达定理 一元二次方程ax2+ bx+ c=0(a、 b、 c属于R,a≠0)根的判别,= b2—4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。 韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。 5、待定系数法 在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。 6、构造法 在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。 数学经常遇到的问题解答 1、要提高数学成绩首先要做什么? 这一点,是很多学生所关注的,要提高数学成绩,首先就应该从基础知识学起。不少同学觉得基础知识过于简单,看两遍基本上就都会了。这种“自我感觉良好”其实是一种错觉,而真正考试时又觉得无从下手,这还是基础不牢的表现,因此要提高数学成绩先要把基础夯实。 2、基础不好怎么学好数学? 对于基础差的同学来说,课本是就是学好数学的秘籍,把课本上的定义、公式、定理全部弄懂,力争在理解的基础上全部背熟,每一道例题、每一道课后题都要掌握。我们知道只有把公式、定理烂熟于心,才能举一反三、活学活用,把课本的知识学透有两个好处,第一,强化基础;第二,提高得分能力。 3、是否要采用题海战术? 方法君曾不止一次提到了“题海战术”,题海战术究竟可不可取呢?“题海战术”其实也是一种学习方法,但很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题经验,这样才能取得理想成绩。 4、做题总是粗心怎么办? 很多学生成绩不好,会说自己是因为粗心导致的,其实“粗心”只是借口,真正的原因就是题做得少、基础知识不牢、没有清晰的解题思路、计算能力不强。因此在平时的学习中,一定要注重熟练度和精准度的练习。如果总是给自己找“粗心”的借口,也就变相否定了自己的学习弱点,所以,要告诉自己,高中数学没有“粗心”只有“不用心”。 为什么要学习数学 作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。 首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。 其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。 除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。 最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。 1、重心的定义: 平面图形中,几何图形的重心是当支撑或悬挂时图形能在水平面处于平衡状态,此时的支撑点或者悬挂点叫做平衡点,也叫做重心。 2、几种几何图形的重心: ⑴线段的重心就是线段的中点; ⑵平行四边形及特殊平行四边形的重心是它的两条对角线的交点; ⑶三角形的三条中线交于一点,这一点就是三角形的重心; ⑷任意多边形都有重心,以多边形的任意两个顶点作为悬挂点,把多边形悬挂时,过这两点铅垂线的交点就是这个多边形的重心。 提示:⑴无论几何图形的形状如何,重心都有且只有一个; ⑵从物理学角度看,几何图形在悬挂或支撑时,位于重心两边的力矩相同。 3、常见图形重心的性质: ⑴线段的重心把线段分为两等份; ⑵平行四边形的重心把对角线分为两等份; ⑶三角形的重心把中线分为1:2两部分(重心到顶点距离占2份,重心到对边中点距离占1份)。 上面对重心知识点的巩固学习,同学们都能熟练的掌握了吧,希望同学们很好的复习学习数学知识。 ①直线和圆无公共点,称相离。 AB与圆O相离,d>r。 ②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d ③直线和圆有且只有一公共点,称相切,这条直线叫做圆的.切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离) 平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是: 1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程 如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。 如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。 2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1 当x=-C/Ax2时,直线与圆相离; k0时,y随x的增大而减小,直线一定过二、四象限(3)若直线l1:yk1xb1l2:yk2xb2 当k1k2时,l1//l2;当b1b2b时,l1与l2交于(0,b)点。 (4)当b>0时直线与y轴交于原点上方;当b学大教育 (1)是中心对称图形,对中称心是原点(2)对称性:是轴直线yx和yx(2)是轴对称图形,对称k0时两支曲线分别位于一、三象限且每一象限内y随x的增大而减小(3) k0时两支曲线分别位于二、四象限且每一象限内y随x的增大而增大(4)过图象上任一点作x轴与y轴的垂线与坐标轴构成的矩形面积为|k|。 P(1)应用在u3.应用(2)应用在(3)其它F上SS上t其要点是会进行“数结形合”来解决问题二、二次函数 1.定义:应注意的问题 (1)在表达式y=ax2+bx+c中(a、b、c为常数且a≠0)(2)二次项指数一定为22.图象:抛物线 3.图象的性质:分五种情况可用表格来说明表达式(1)y=ax2顶点坐标对称轴(0,0)最大(小)值y最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直线x=hy最小=0y最大=0y随x的变化情况随x增大而增大随x增大而减小随x的增大而增大随x的增大而减小随x的`增大而增大随x的增大而减小直线x=0(y轴)①若a>0,则x=0时,若a>0,则x>0时,y②若a0,则x=0时,①若a>0,则x>0时,y②若a0,则x=h时,①若a>0,则x>h时,y②若a学大教育 表达式h)2+k顶点坐标对称轴直线x=h最大(小)值y最小=ky最大=k(5)y=ax2+b(x+cb2ay随x的变化情况随x的增大而增大随x的增大而减小b2a时,①若a>0,则x>b2a(4)y=a(x-(h,k)①若a>0,则x=h时,①若a>0,则x>h时,y②若a0,则x=4acb24ay最小=4acb24ab时,y随x的增大而增大时,②若a2a2a时,y随x的增大而减小b②若a学大教育 一次函数图象和性质 【知识梳理】 1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0).2.一次函数ykxb的图象是经过(3.一次函数ykxb的图象与性质 图像的大致位置经过象限第象限第象限第象限第象限y随x的增大y随x的增大而y随x的增大y随x的增大性质而而而而 【思想方法】数形结合 k、b的符号k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)两点的一条直线.k反比例函数图象和性质 【知识梳理】 1.反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y=或(k为常数,k≠0)的形式,那么称y是x的反比例函数.2.反比例函数的图象和性质 k的符号k>0yoxk<0yox 图像的大致位置经过象限性质 第象限在每一象限内,y随x的增大而第象限在每一象限内,y随x的增大而3.k的几何含义:反比例函数y=的几何意义,即过双曲线y= k(k≠0)中比例系数kxk(k≠0)上任意一点P作x4 x轴、y轴垂线,设垂足分别为A、B,则所得矩形OAPB 函数学习方法学大教育 的面积为. 【思想方法】数形结合 二次函数图象和性质 【知识梳理】 1.二次函数ya(xh)2k的图像和性质 图象开口对称轴顶点坐标最值增减性 在对称轴左侧在对称轴右侧当x=时,y有最值y随x的增大而y随x的增大而a>0yOa<0x当x=时,y有最值y随x的增大而y随x的增大而锐角三角函数 【思想方法】 1.常用解题方法设k法2.常用基本图形双直角 【例题精讲】例题1.在△ABC中,∠C=90°.(1)若cosA= 14,则tanB=______;(2)若cosA=,则tanB=______.255 函数学习方法学大教育 例题2.(1)已知:cosα= 23,则锐角α的取值范围是()A.0° 1有理数加法法则 1、同号两数相加,取相同的符号,并把绝对值相加; 2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; 3、一个数与0相加,仍得这个数。 2有理数加法的运算律 1、加法的交换律:a+b=b+a; 2、加法的结合律:(a+b)+c=a+(b+c) 3有理数减法法则 减去一个数,等于加上这个数的`相反数;即a—b=a+(—b) 4有理数乘法法则 1、两数相乘,同号为正,异号为负,并把绝对值相乘; 2、任何数同零相乘都得零; 3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。 5有理数乘法的运算律 1、乘法的交换律:ab=ba; 2、乘法的结合律:(ab)c=a(bc); 3、乘法的分配律:a(b+c)=ab+ac 6单项式 只含有数字与字母的积的代数式叫做单项式。 注意:单项式是由系数、字母、字母的指数构成的。 7多项式 1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。 2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。 8中心对称 1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。这两个图形中的对应点叫做关于中心的对称点。 2、心对称的两条基本性质: (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。 (2)关于中心对称的两个图形是全等图形。 3、中心对称图形 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。 一、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法 用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 二、相交线与平行线 1、知识网络结构 2、知识要点 (1)在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。 (2)在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。 (3)两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是 邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角, 与互为邻补角。+=180°;+=180°;+=180°;+=180°。 3、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=; =。 4、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。 垂线的.性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 性质3:如图2所示,当a⊥b时,====90°。 点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。 5、同位角、内错角、同旁内角基本特征: 在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。图3中,共有对同位角:与是同位角;与是同位角;与是同位角;与是同位角。 在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。 在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。 三、实数 1、实数的分类 (1)按定义分类: (2)按性质符号分类: 注:0既不是正数也不是负数. 2、实数的相关概念 (1)相反数 ①代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0. ②几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称. ③互为相反数的两个数之和等于0.a、b互为相反数a+b=0. (2)绝对值|a|≥0. (3)倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数. (4)平方根 ①如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作. ②一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作. (5)立方根 如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零. 3、实数与数轴 数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可. 4、实数大小的比较 (1)对于数轴上的任意两个点,靠右边的点所表示的数较大. (2)正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小. (3)无理数的比较大小: 一元一次方程定义 通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。 一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。 即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。 一元一次方程的五个核心问题 一、什么是等式?1+1=1是等式吗? 表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的.字母,等式总不成立,如x2=-2,|a|+5=0等。 一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。 等式与代数式不同,等式中含有等号,代数式中不含等号。 等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。 二、什么是方程,什么是一元一次方程? 含有未知数的等式叫做方程,如2x-3=8,x+y=7等。判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。 只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。其标准形式是ax+b=0(a不为0,a,b是已知数),值得注意的是1)一个整式方程的"元"和"次"是将这个方程化成最简形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。(2)整式方程分母中不含有未知数。判断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,因为它的分母中含有未知数x,所以,它不是整式方程。如果将上面的方程进行化简,则为x=2,这时再去作判断,将得到错误的结论。 凡是谈到次数的方程,都是指整式方程,即方程的两边都是整式。一元一次方程是整式方程中元数最少且次数最低的方程。 三、等式有什么牛掰的基本性质吗? 将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项,移项的依据是等式的基本性质1。 移项时不一定要把含未知数的项移到等式的左边。如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。 去分母,将未知数的系数化为1,则是依据等式的基本性质2进行的。 四、等式一定是方程吗?方程一定是等式吗? 等式与方程有很多相同之处。如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区别的。方程仅是含有未知数的等式,是等式中的特例。就是说,等式包含方程;反过来,方程并不包含所有的等式。如,13+5=18,18-13=5都属于等式,但它们并不是方程。因此,等式一定是方程的说法是不对的。 五、"解方程"与"方程的解"是一回事儿吗? 方程的解是使方程左、右两边相等的未知数的取值。而解方程是求方程的解或判断方程无解的过程。即方程的解是结果,而解方程是一个过程。方程的解中的"解"是名词,而解方程中的"解"是动词,二者不能混淆。 【我的自画像四年级作文400字】相关文章: 我的自画像作文07-01 我的自画像四年级作文10-31 我的自画像四年级作文01-03 四年级我的自画像作文01-17 [精选]我的自画像四年级作文05-29 (精选)我的自画像四年级作文05-24 四年级我的自画像作文11-03 我的自画像四年级作文06-29 我的“自画像”四年级作文12-23 我的自画像作文四年级01-03我的自画像四年级作文400字3
我的自画像四年级作文400字4
我的自画像四年级作文400字5
我的自画像四年级作文400字6
我的自画像四年级作文400字7
我的自画像四年级作文400字8
我的自画像四年级作文400字9
我的自画像四年级作文400字10
我的自画像四年级作文400字11
我的自画像四年级作文400字12
我的自画像四年级作文400字13
我的自画像四年级作文400字14
我的自画像四年级作文400字15